Search results for " p-Laplacian"

showing 3 items of 23 documents

Regularity properties of tug-of-war games and normalized equations

2017

osittaisdifferentiaaliyhtälötviscosity solutionspeliteoriastochastic gamesnormalized p-Laplacianstokastiset prosessit
researchProduct

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian

2018

In this paper, we study an evolution equation involving the normalized [Formula: see text]-Laplacian and a bounded continuous source term. The normalized [Formula: see text]-Laplacian is in non-divergence form and arises for example from stochastic tug-of-war games with noise. We prove local [Formula: see text] regularity for the spatial gradient of the viscosity solutions. The proof is based on an improvement of flatness and proceeds by iteration.

viscosity solutionsApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysisparabolic01 natural sciencesNoise (electronics)non-homogeneouslocal C-alpha regularityTerm (time)010101 applied mathematicsViscosityBounded functionNon homogeneousEvolution equationp-Laplacian0101 mathematicsnormalized p-LaplacianFlatness (mathematics)MathematicsCommunications in Contemporary Mathematics
researchProduct