Search results for " parametri"

showing 10 items of 171 documents

Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate

2010

Lithium selenoindate (LiInSe2) is a new nonlinear chalcogenide biaxial crystal, related to LiInS2 and transparent from 0.54 to 10 μm at the 50% level (10 mm thickness), which has been successfully grown in large sizes and with good optical quality. We report on what we believe to be new physical properties that are relevant for laser and nonlinear optical applications and summarize all relevant characteristics, both from the literature and as measured in the present work. With respect to AgGaS(e)2 ternary chalcopyrite materials, LiInSe2 displays a nearly isotropic thermal expansion behavior with three- to five-times-larger thermal conductivities associated with high optical damage threshold…

Materials scienceChalcogenidechemistry.chemical_element02 engineering and technology01 natural sciences7. Clean energylaw.invention010309 opticschemistry.chemical_compoundOpticslaw0103 physical sciencesThin filmOptical amplifierbusiness.industryStatistical and Nonlinear PhysicsNanosecond021001 nanoscience & nanotechnologyLaserOptical parametric amplifierAtomic and Molecular Physics and OpticschemistrySapphireLithium0210 nano-technologybusinessJournal of the Optical Society of America B
researchProduct

Three-Dimensional Printing of Nonlinear Optical Lenses.

2018

In the current paper, a series of nonlinear optical (NLO) active devices was prepared by utilizing stereolithographic three-dimensional printing technique. Microcrystalline NLO active component, urea, or potassium dihydrogen phosphate was dispersed in a simple photopolymerizable polyacrylate-based resin and used as the printing material to fabricate highly efficient transparent NLO lenses. The nonlinear activity of the printed lenses was confirmed by second-harmonic generation measurements using a femtosecond laser-pumped optical parametric amplifier operating at a wavelength of 1195 nm. The three-dimensional printing provides a simple method to utilize a range of NLO active compounds witho…

Materials scienceGeneral Chemical Engineeringlinssit (optiikka)Crystal growth010402 general chemistry01 natural sciencesnonlinear optical lensesArticlelcsh:ChemistryNonlinear optical3D-tulostusthree-dimensional printingta216ta116ta114010405 organic chemistrybusiness.industryGeneral ChemistryOptical parametric amplifier0104 chemical sciencesWavelengthNonlinear systemMicrocrystallinelcsh:QD1-999Three dimensional printingFemtosecondOptoelectronicsbusinessACS omega
researchProduct

Parameters influencing the stiffness of composites reinforced by carbon nanotubes – A numerical–analytical approach

2014

Abstract Due to their high stiffness and strength, as well as their electrical conductivity, carbon nanotubes are under intense investigation as fillers in polymer matrix composites. The nature of the carbon nanotube/polymer bonding and the curvature of the carbon nanotubes may strongly reduce the reinforcing effect of the carbon nanotubes when added to a matrix to create composites. Here the effects of carbon nanotube waviness and the interaction with the matrix on the stiffness of the composite are investigated. Using a mixed numerical–analytical model, a parametric study of the waviness and volume fraction influence of CNTs on the elastic behavior of the nanocomposite is presented. The m…

Materials scienceNanocompositeCarbon nanotube Parametric study Modeling Composite Finite element methodWavinessCarbon nanotube actuatorsStiffnessMechanical properties of carbon nanotubesCarbon nanotubeCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionCarbon nanotube metal matrix compositesSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCondensed Matter::Materials SciencelawVolume fractionCeramics and Compositesmedicinemedicine.symptomComposite materialCivil and Structural EngineeringComposite Structures
researchProduct

Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator

2010

Chronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.g., chronic neuroinflammation) necessitating the use of fluorescent…

Materials scienceOptical PhenomenaInfrared RaysInfraredGreen Fluorescent ProteinsSpectroscopy Imaging and Other TechniquesBiophysicsColorCell Linelaw.inventionMiceOpticsTwo-photon excitation microscopylawAluminum OxideAnimalsTitaniumMicroscopyPhotonsPhotobleachingbusiness.industryLasersLaserPhotobleachingFluorescenceMolecular ImagingLuminescent ProteinsBiophysicsOptical parametric oscillatorbusinessExcitationIntravital microscopyBiophysical Journal
researchProduct

Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers

2012

International audience; In this work, we report the experimental observation of supercontinua generation in two kinds of suspended-core microstructured soft-glass optical fibers. Low loss, highly nonlinear, tellurite and As2S3 chalcogenide fibers have been fabricated and pumped close to their zero-dispersion wavelength in the femtosecond regime by means of an optical parametric oscillator pumped by a Ti:Sapphire laser. When coupled into the fibers, the femtosecond pulses result in 2000-nm bandwidth supercontinua reaching the Mid-Infrared region and extending from 750 nm to 2.8 mu m in tellurite fibers and 1 mu m to 3.2 mu m in chalcogenide fibers, respectively.

Materials scienceOptical fiberLightChalcogenidePUMPMU-MFABRICATIONPhysics::Optics02 engineering and technologySulfidesPHOTONIC CRYSTAL FIBERS01 natural sciencesNMlaw.invention010309 opticschemistry.chemical_compoundOpticsDISPERSIONlaw0103 physical sciencesOptical Fibersbusiness.industryLasersOHAS2S3 GLASSEquipment Design021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsSupercontinuumCONTINUUM GENERATIONCHALCOGENIDEchemistryNonlinear DynamicsFemtosecondOptical parametric oscillatorSapphireTellurium0210 nano-technologybusinessPhotonic-crystal fiber
researchProduct

Continuous-wave backward frequency doubling in periodically poled lithium niobate

2010

We report on backward second-harmonic-generation in bulk periodically poled congruent lithium niobate with a 3.2 microns period. A tunable continuous-wave Ti:sapphire laser allowed us exciting two resonant quasi-phase-matching orders in the backward configuration. The resonances were also resolved by temperature tuning and interpolated with standard theory to extract relevant information on the sample.

Materials sciencePhysics and Astronomy (miscellaneous)business.industryNonlinear optics Parametric processes Backward frequency doublingLithium niobatePhysics::OpticsFOS: Physical sciencesLaserlaw.inventionchemistry.chemical_compoundOpticschemistrylawSapphireContinuous waveStandard theorybusinessRelevant informationPhysics - OpticsOptics (physics.optics)
researchProduct

Comprehensive formulation of temperature-dependent dispersion of optical materials: illustration with case of temperature tuning of a mid-IR HgGa_2S_…

2009

The temperature dependence of refractive indices of optical materials is characterized in this work by what we call their normalized thermo-optic coefficients. These are determined experimentally through interferometric measurements of thermal expansion and of changes in optical thickness at a few laser wavelengths as function of temperature. A suitable vectorial formalism applied to these data allows predicting the thermal evolution of the refractive index all over the useful range of transparency. The validity and reliability of our methodology is demonstrated through temperature tuning of a mid-IR HgGa2S4 optical parametric oscillator (OPO) pumped at 1.0642 μm by a Nd:YAG laser. Measured…

Materials sciencebusiness.industryPhysics::OpticsNonlinear opticsStatistical and Nonlinear PhysicsLaserAtomic and Molecular Physics and OpticsThermal expansionlaw.inventionInterferometryWavelengthOpticslawOptical parametric oscillatorbusinessRefractive indexOptical depthJournal of the Optical Society of America B
researchProduct

Non-linear systems under parametric white noise input: digital simulation and response

2005

Abstract Monte Carlo technique is constituted of three steps. Therefore, improving such technique in practice means, improving the procedure used in one of the three following steps: (i) sample paths of the stochastic input process, (ii) calculation of the outputs corresponding to the generated input samples by using methods of classical dynamics and (iii) estimating statistics of the output process from sample outputs related to the previous step. For linear and non-linear systems driven by parametric impulsive inputs such as normal or non-normal white noises, a general integration method requires a considerable reduction of the integration step when the impulse occurs, treating the impuls…

Mathematical optimizationApplied MathematicsMechanical EngineeringMonte Carlo methodα-stable white noiseParametric impulseWhite noiseImpulse (physics)Poissonian white noiseWindow functionα-stable white noise; Normal white noise; Parametric impulse; Poissonian white noiseNonlinear systemMechanics of MaterialsMonte Carlo integrationQuasi-Monte Carlo methodAlgorithmParametric statisticsMathematicsNormal white noise
researchProduct

Ultimate Shear of RC Beams with Corroded Stirrups and Strengthened with FRP

2019

Transverse reinforcement plays a key role in the response behavior of reinforced concrete beams. Therefore, corrosion of steel stirrups may change the failure mode of elements from bending to shear, leading to a brittle and catastrophic crisis. It is important to strengthen reinforced concrete beams with corroded stirrups to enhance the shear resistance. This paper presents a formulation, based on the modified compression field theory, to estimate the ultimate shear of reinforced concrete beams strengthened with FRP, because of stirrup corrosion. The detrimental effect of corrosion on steel stirrup yield strength was taken into account by introducing an empirical decay law. The effective st…

Modified Compression Field TheoryBeams; Corrosion; FRP; MCFT; Parametric analysis; Reinforced concrete; Shear; Stirrups; Civil and Structural Engineering; Building and ConstructionMaterials science0211 other engineering and technologies020101 civil engineering02 engineering and technologyshearstirrupslcsh:TH1-97450201 civil engineeringCorrosioncorrosion; stirrups; shear; FRP; MCFT; reinforced concrete; beams; parametric analysisBrittleness021105 building & constructionArchitectureMCFTCivil and Structural EngineeringEnvironmental Science (all)corrosion2300Parametric analysibusiness.industryBeamStructural engineeringBuilding and ConstructionFibre-reinforced plasticBeams; Corrosion; FRP; MCFT; Parametric analysis; Reinforced concrete; Shear; Stirrups; Architecture; 2300; Environmental Science (all); Civil and Structural Engineering; Building and ConstructionReinforced concretereinforced concreteStirrupShear (geology)parametric analysisbeamsbusinessFailure mode and effects analysisFRPlcsh:Building constructionBuildings; Volume 9; Issue 2; Pages: 34
researchProduct

Nanopatterned ferroelectric crystals for parametric generation

2006

We report on recent results by surface periodic poling on lithium niobate and lithium tantalate. Such approach allows periodic inversion of the second order susceptibility with nanoscale features using insulating masks. We achieved a world-best 200 nm feature size, as well as good compatibility with alpha-phase proton exchanged channel waveguides in lithium niobate. Preliminary results of surface periodic poling in lithium tantalate also show similar characteristics. Surface poling is best suited for integrated optics devices in technologically-demanding configurations such as backward second harmonic generation and counter propagating optical parametric amplification

Nonlinear integrated opticsOptical frequency multiplierMaterials sciencebusiness.industryParametric generationPolingLithium niobateSecond-harmonic generationPhysics::OpticsLithium tantalateSurface periodic polingLithium niobateFerroelectricityOptical parametric amplifierchemistry.chemical_compoundOpticschemistryPeriodic polingLithium tantalatebusiness
researchProduct