Search results for " plastic"

showing 10 items of 3463 documents

Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing

2017

The need to better understand how plasticity and evolution affect organismal responses to environmental variability is paramount in the face of global climate change. The potential for using RNA sequencing (RNA-seq) to study complex responses by non-model organisms to the environment is evident in a rapidly growing body of literature. This is particularly true of fishes for which research has been motivated by their ecological importance, socioeconomic value, and increased use as model species for medical and genetic research. Here, we review studies that have used RNA-seq to study transcriptomic responses to continuous abiotic variables to which fishes have likely evolved a response and th…

0106 biological sciences0301 basic medicineEnvironmental changeClimate changeadaptationBiology010603 evolutionary biology01 natural sciencesphenotypic plasticityTranscriptome03 medical and health sciencestranscriptomics14. Life underwaterlcsh:SciencePhenotypic plasticityMultidisciplinarygenomic reaction normsEcologyGlobal warmingRNARNA sequencing030104 developmental biologyclimate changeEvolutionary biologylcsh:QAdaptationlcsh:Llcsh:EducationFACETS
researchProduct

Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions

2018

International audience; Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHCs. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC co…

0106 biological sciences0301 basic medicineHot TemperaturePhysiologyDesiccation resistanceAcclimatizationClimateClimate Change[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Phenotypic plasticityAquatic ScienceMyrmica rubra010603 evolutionary biology01 natural sciencesAcclimatizationDrought survivalCHCs03 medical and health sciencesSpecies SpecificityAnimalsRelative humidityMyrmica ruginodisSolid contentMicrorheologyMolecular BiologyEcology Evolution Behavior and Systematicschemistry.chemical_classificationPhenotypic plasticitybiologyAntsEcologyViscosityHumidityHumidity15. Life on landbiology.organism_classificationHydrocarbons[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology030104 developmental biologyHydrocarbonchemistry13. Climate actionInsect ScienceAnimal Science and Zoology[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/BioclimatologyRheology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Predator-induced Contemporary Evolution, Phenotypic Plasticity, and the Evolution of Reaction Norms in Guppies

2017

An increasingly large number of studies have demonstrated the ability of populations to undergo contemporary or rapid evolution. Little explored in this regard is the role of phenotypic plasticity, although it can influence eco-evolutionary dynamics and hence evolutionary rates. Here we quantify the evolution of life history and plasticity in Trinidadian guppies transplanted from high to novel low predation environments. Common-garden results show that after only nine years, or 13–27 generations, the introduced guppies have diverged from their ancestral population in both litter size and offspring weight and in the plastic response of both traits to food availability. Given these findings, …

0106 biological sciences0301 basic medicineLitter (animal)education.field_of_studyPhenotypic plasticityOffspringPopulationAquatic ScienceBiologyPlasticity010603 evolutionary biology01 natural sciencesPredation03 medical and health sciences030104 developmental biologyEvolutionary biologyAnimal Science and ZoologyeducationPredatorEcology Evolution Behavior and SystematicsLocal adaptationCopeia
researchProduct

Sex-specific compensatory growth in the larvae of the greater wax moth Galleria mellonella

2017

Deficiency of food resources in ontogeny is known to prolong an organism's developmental time and affect body size in adulthood. Yet life‐history traits are plastic: an organism can increase its growth rate to compensate for a period of slow growth, a phenomenon known as ‘compensatory growth’. We tested whether larvae of the greater wax moth Galleria mellonella can accelerate their growth after a fast of 12, 24 or 72 h. We found that a subgroup of female larvae showed compensatory growth when starved for 12 h. Food deficiency lasting more than 12 h resulted in longer development and lower mass gain. Strength of encapsulation reactions against a foreign body inserted in haemocoel was the wea…

0106 biological sciences0301 basic medicineMaleOntogenyZoologyMoths010603 evolutionary biology01 natural sciences03 medical and health sciencesSex FactorsAnimalsGrowth rateMass gainEcology Evolution Behavior and SystematicsLarvaWaxbiologyfungita1182biology.organism_classificationSex specificGalleria mellonella030104 developmental biologyvisual_artLarvavisual_art.visual_art_mediumDevelopmental plasticityta1181FemaleFood DeprivationJournal of Evolutionary Biology
researchProduct

2021

Predator-induced plasticity in life-history and antipredator traits during the larval period has been extensively studied in organisms with complex life-histories. However, it is unclear whether different levels of predation could induce warning signals in aposematic organisms. Here, we investigated whether predator-simulated handling affects warning coloration and life-history traits in the aposematic wood tiger moth larva, Arctia plantaginis. As juveniles, a larger orange patch on an otherwise black body signifies a more efficient warning signal against predators but this comes at the costs of conspicuousness and thermoregulation. Given this, one would expect that an increase in predation…

0106 biological sciences0301 basic medicinePhenotypic plasticityLarvaEcologyForagingZoologyAposematismBiologyTrade-off010603 evolutionary biology01 natural sciencesLife history theoryPredation03 medical and health sciences030104 developmental biologyPredatorEcology Evolution Behavior and SystematicsFrontiers in Ecology and Evolution
researchProduct

How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile

2017

1.Organisms from temperate zones are exposed to seasonal changes and must be able to cope with a wide range of climatic conditions. Especially ectotherms, including insects, are at risk to desiccate under dry and warm conditions, the more so given the changing climate. 2.To adjust to current conditions, organisms acclimate through changes in physiology, morphology and/or behaviour. Insects protect themselves against desiccation through a layer of cuticular hydrocarbons (CHC) on their body surface. Hence, acclimation may also affect the CHC profile, changing their waterproofing capacity under different climatic conditions. 3.Here, we investigated the acclimation response of two Temnothorax a…

0106 biological sciences0301 basic medicinePhenotypic plasticityTemnothoraxbiologyEcologyRange (biology)biology.organism_classification010603 evolutionary biology01 natural sciencesAcclimatizationBeneficial acclimation hypothesis03 medical and health sciences030104 developmental biologyEctothermTemperate climateDesiccationEcology Evolution Behavior and SystematicsFunctional Ecology
researchProduct

Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomyco…

2017

Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression lev…

0106 biological sciences0301 basic medicineSaccharomyces cerevisiae ProteinsGene duplicationDuplicabilityPlant Biology & BotanySaccharomyces cerevisiaeSaccharomyces cerevisiae01 natural sciencesDivergenceEvolution Molecular03 medical and health sciencesGenes DuplicateGene Expression Regulation FungalGene expressionGene duplicationGeneticsSelection GeneticSaccharomycotinaPromoter Regions GeneticMolecular BiologyGenePhylogenybiologyPhylogenetic treeGenetic VariationPromoterGeneral MedicineFull Papersbiology.organism_classification030104 developmental biologyEvolutionary biologyTranscriptional plasticityGene expressionGenome Fungal010606 plant biology & botany
researchProduct

Spatial and Temporal Variability in Migration of a Soaring Raptor Across Three Continents

2019

Disentangling individual- and population-level variation in migratory movements is necessary for understanding migration at the species level. However, very few studies have analyzed these patterns across large portions of species' distributions. We compiled a large telemetry dataset on the globally endangered egyptian vulture neophron percnopterus (94 individuals, 188 completed migratory journeys), tracked across similar to 70% of the species' global range, to analyze spatial and temporal variability of migratory movements within and among individuals and populations. We found high migratory connectivity at large spatial scales (i.e., different subpopulations showed little overlap in winte…

0106 biological sciences0301 basic medicineSatellite trackingconservation biologyEnvironmental changeRange (biology)GPSPopulationlcsh:EvolutionEndangered speciesPhenotypic plasticity010603 evolutionary biology01 natural sciencesphenotypic plasticityMovement ecology03 medical and health sciencesmigration connectivitylcsh:QH540-549.5Flywaybiology.animalNeophron percnopteruslcsh:QH359-425ZoologíaeducationEcology Evolution Behavior and SystematicsVulture2. Zero hunger[SDV.EE]Life Sciences [q-bio]/Ecology environmenteducation.field_of_studyEcologybiologyConservation biologyEcologysatellite tracking[SDV.BA]Life Sciences [q-bio]/Animal biology15. Life on landMigration connectivity; Neophron percnopterus; Conservation biology; Movement ecology; Satellite tracking; GPS; Phenotypic plasticityBiology; Environmental sciences and ecology030104 developmental biologyGeographymovement ecologyNeophron percnopteruslcsh:EcologyConservation biologyMigration connectivity
researchProduct

Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species.

2020

Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi-dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence,…

0106 biological sciences0301 basic medicineSympatryClimateNicheGenome InsectAdaptation BiologicalBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesddc:570AnimalsEcology Evolution Behavior and SystematicsLocal adaptationMutualism (biology)Phenotypic plasticityNatural selectionAntsBiological EvolutionHydrocarbonsAnimal CommunicationSympatry030104 developmental biologyEvolutionary biologySympatric speciationParallel evolutionJournal of evolutionary biologyREFERENCES
researchProduct

Strong signature of selection in seeder populations but not in resprouters of the fynbos heathErica coccinea(Ericaceae)

2016

A higher frequency of natural selection is expected in populations of organisms with shorter generation times. In fire-prone ecosystems, populations of seeder plants behave as functionally semelparous populations, with short generation times compared to populations of resprouter plants, which are truly iteroparous. Therefore, a stronger signature of natural selection should be detected in seeder populations, favoured by their shorter generation times and higher rates of population turnover. Here we test this idea in Erica coccinea from the Cape Floristic Region, which is dimorphic for post-fire regeneration mode. We measured three floral traits supposedly subject to natural selection in see…

0106 biological sciences0301 basic medicineUniform selectionPST−FST analysisPlant ScienceBiologySeederPhenotypic variation010603 evolutionary biology01 natural sciences03 medical and health sciencesGenetic variationPost-fire regenerationBird pollinationResprouterEcology Evolution Behavior and SystematicsSelection (genetic algorithm)Phenotypic plasticityNatural selectionEcologyNeutral genetic variationPhenotypic trait030104 developmental biologyGeneration timeAdaptationBotanical Journal of the Linnean Society
researchProduct