Search results for " plastic"

showing 10 items of 3463 documents

Lignin Inter-Diffusion Underlying Improved Mechanical Performance of Hot-Pressed Paper Webs

2021

Broader use of bio-based fibres in packaging becomes possible when the mechanical properties of fibre materials exceed those of conventional paperboard. Hot-pressing provides an efficient method to improve both the wet and dry strength of lignin-containing paper webs. Here we study varied pressing conditions for webs formed with thermomechanical pulp (TMP). The results are compared against similar data for a wide range of other fibre types. In addition to standard strength and structural measurements, we characterise the induced structural changes with X-ray microtomography and scanning electron microscopy. The wet strength generally increases monotonously up to a very high pressing tempera…

0106 biological sciencesMaterials sciencePolymers and PlasticsScanning electron microscopeDiffusionligninOrganic chemistry02 engineering and technologyengineering.materialHot pressing01 natural sciencesbiofysiikkaArticlediffuusio (fysikaaliset ilmiöt)QD241-441Wet strength010608 biotechnologyComposite materialSofteningkuumapuristusPaperboardPressingkuidutpakkausmateriaalitPulp (paper)diffusionpaperiekologisuusligniiniPappers- massa- och fiberteknikGeneral ChemistryPaper Pulp and Fiber Technologyhot-pressingmassa- ja paperiteollisuus021001 nanoscience & nanotechnologyactivation energybiotekniikkavisual_artfibrevisual_art.visual_art_mediumengineeringpaper weblämpötilavetolujuusvalmistus0210 nano-technologyPolymers
researchProduct

From glacial refugia to hydrological microrefugia: Factors and processes driving the persistence of the climate relict tree Zelkova sicula

2021

Abstract With only two tiny populations, the climate relict Zelkova sicula (Sicily, Italy) is one of the rarest trees in the world. It also represents the most marginal member of genus Zelkova that was widespread in the broadleaved forests thriving in warm–temperate climates throughout Eurasia until the Last Glacial Age. Occurring at the westernmost range of the genus under typical Mediterranean climate, the micro‐topographic settings have always appeared crucial for the survival of this relict. However, the factors and processes actually involved in its persistence in the current refugia, as well as the response of similar relict trees in arid environments, are poorly understood worldwide.…

0106 biological sciencesMediterranean climateRange (biology)marginal habitatsrear edge populations010603 evolutionary biology01 natural sciences03 medical and health scienceslcsh:QH540-549.5Glacial periodtopographic attribute analysesecological plasticityEcology Evolution Behavior and SystematicsZelkova siculaOriginal Research030304 developmental biologyNature and Landscape Conservation0303 health sciencesEcologybiologyResistance (ecology)ZelkovaEcologybiology.organism_classificationCenozoic relictsAridGeographyCenozoic relicts ecological plasticity marginal habitats rear edge populations soil moisture topographic attribute analysesSettore BIO/03 - Botanica Ambientale E ApplicataSpatial ecologylcsh:Ecologysoil moisture
researchProduct

Carvacrol activated biopolymeric foam: An effective packaging system to control the development of spoilage and pathogenic bacteria on sliced pumpkin…

2021

Abstract A commercial biodegradable starch-based polymer (Mater-Bi) was activated with carvacrol to develop a biodegradable and compostable polymer to be used in food packaging. Based on previous tests, carvacrol was added at 20 % weight of foam. MB foams, with and without carvacrol, were tested for their morphological characteristics, mechanical tests and kinetics of carvacrol release under refrigerated storage conditions. Carvacrol slightly increased the porosity of the foams, induced a reduction of the compressive elastic modulus (Ecom) of foamed MB from 6 to ∼ 3.4 MPa and a decrease of the tensile elastic modulus from ∼70 MPa to ∼16.5 MPa. Carvacrol release from the foam at 4 °C was alm…

0106 biological sciencesMicrobiology (medical)Polymers and PlasticsMelonStarchFood spoilageActive packagingBiopolymeric foamsSettore AGR/04 - Orticoltura E FloricolturaSpoilage and pathogenic bacteriamedicine.disease_cause01 natural sciencesAntibacterial propertiesBiomaterialsFood packagingchemistry.chemical_compound0404 agricultural biotechnologyListeria monocytogenesCarvacrol010608 biotechnologymedicineCarvacrolFood scienceSafety Risk Reliability and QualityFood model systemsbiologyChemistrySettore ING-IND/34 - Bioingegneria Industriale04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceFood packagingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiIn vivo activityBacteriaSettore AGR/16 - Microbiologia AgrariaFood ScienceFood Packaging and Shelf Life
researchProduct

Fresh-cut storage of fruit and fresh-cuts affects the behaviour of minimally processed Big Bang nectarines ( Prunus persica L. Batsch) during shelf l…

2018

Abstract Nectarine can be minimally processed to successfully produce ready-to-eat fresh-cuts fruit. The aim of this work was to study the combined effect of the ripening stage of cold stored fruit before processing and the length of the storage period of fresh-cut slices after minimal processing, on the behaviour of minimally processed “Big Bang” nectarines during shelf life. ‘Big Bang’nectarine slices obtained from fruit stored at 1 ± 0.5 °C (RH = 90%) for 1 d, 10 d and 15 d were stored for 0, 3, 5, 7, 12 d. at 5 °C. At the end of each storage period, visual quality, color (L*, a* and b*), phenols and carothenoids content, TSS, TA were measured together with in-package CO2 and O2. Despite…

0106 biological sciencesMicrobiology (medical)Polymers and PlasticsRipening04 agricultural and veterinary sciencesPolyphenol oxidase activityShelf life01 natural sciences040501 horticultureSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeBiomaterialsPrunusHorticultureBotanyPostharvest Peach Carotenoids PPO POD PAL0405 other agricultural sciencesSafety Risk Reliability and Quality010606 plant biology & botanyFood ScienceMathematicsFood Packaging and Shelf Life
researchProduct

Thermoplastic starch and green tea blends with LLDPE films for active packaging of meat and oil-based products

2019

International audience; Thermoplastic starch (TPS) is an alternative biomaterial that can be used to produce bioplastics to replace petroleum-based food packaging. Active films were developed from acetylated cassava TPS and green tea using the blown extrusion process. Green tea (GT) and TPS from native starch (NS) and acetylated starch (AS) with different degrees of substitution (DS) were extruded with linear low-density polyethylene (LLDPE) at LLDPE/TPS-GT ratios of 70/30 and 60/40 prior to blown-film extrusion. Results indicated that a higher DS of AS enhanced melt flow index which altered processability and subsequently impacted film microstructures and physical and barrier properties. N…

0106 biological sciencesMicrobiology (medical)Polymers and PlasticsStarchActive packaging[SDV.TOX.TCA]Life Sciences [q-bio]/Toxicology/Toxicology and food chain01 natural sciencesBioplasticBiomaterialsLLDPEchemistry.chemical_compoundFood packaging0404 agricultural biotechnologyLipid oxidation010608 biotechnologySafety Risk Reliability and QualityFilmMelt flow indexThermoplastic starchChemistryfood and beverages04 agricultural and veterinary sciences040401 food scienceLinear low-density polyethyleneFood packagingChemical engineeringActive packagingExtrusionAntioxidant[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood Science
researchProduct

A review of transgenerational effects of ocean acidification on marine bivalves and their implications for sclerochronology

2020

Abstract Ocean acidification can negatively impact marine bivalves, especially their shell mineralization processes. Consequently, whether marine bivalves can rapidly acclimate and eventually adapt in an acidifying ocean is now increasingly receiving considerable attention. Projecting the fate of this vulnerable taxonomic group is also pivotal for the science of sclerochronology – the study which seeks to deduce records of past environmental changes and organismal life-history traits from various geochemical properties of periodically layered hard tissues (bivalve shells, corals, fish otoliths, etc.). In this review, we provide a concise overview of the long-term and transgenerational respo…

0106 biological sciencesPhenotypic plasticity010504 meteorology & atmospheric sciencesEcology010604 marine biology & hydrobiologyClimate changeOcean acidificationAquatic ScienceBiologyOceanography01 natural sciencesAcclimatizationIsotopes of oxygenTransgenerational epigeneticsIsotopes of carbonSclerochronology0105 earth and related environmental sciencesEstuarine, Coastal and Shelf Science
researchProduct

Estimation of fitness from energetics and life-history data: An example using mussels.

2017

Changing environments have the potential to alter the fitness of organisms through effects on components of fitness such as energy acquisition, metabolic cost, growth rate, survivorship, and reproductive output. Organisms, on the other hand, can alter aspects of their physiology and life histories through phenotypic plasticity as well as through genetic change in populations (selection). Researchers examining the effects of environmental variables frequently concentrate on individual components of fitness, although methods exist to combine these into a population level estimate of average fitness, as the per capita rate of population growth for a set of identical individuals with a particul…

0106 biological sciencesPhenotypic plasticityEcology010604 marine biology & hydrobiologyBiology010603 evolutionary biology01 natural sciencesSurvivorship curveStatisticsPer capitaPopulation growthProduction (economics)Set (psychology)Ecology Evolution Behavior and SystematicsSelection (genetic algorithm)OrganismNature and Landscape ConservationEcology and evolution
researchProduct

Empirical evidence for fast temperature-dependent body size evolution in rotifers

2017

Organisms tend to decrease in size with increasing temperature by phenotypic plasticity (the temperature-size rule; ectotherms) and/or genetically (Bergmann’s rule; all organisms). In this study, the evolutionary response of body size to temperature was examined in the cyclically parthenogenetic rotifer Brachionus plicatilis. Our aim was to investigate whether this species, already known to decrease in size with increasing temperature by phenotypic plasticity, presents a similar pattern at the genetic level. We exposed a multiclonal mixture of B. plicatilis to experimental evolution at low and high temperature and monitored body size weekly. Within a month, we observed a smaller size at hig…

0106 biological sciencesPhenotypic plasticityExperimental evolutionbiologyEcology010604 marine biology & hydrobiologyBergmann’s ruleZoologyEcologia animalRotiferParthenogenesisAquatic SciencePlasticityBrachionusbiology.organism_classificationRotífers010603 evolutionary biology01 natural sciencesBergmann's ruletemperature-size ruleEctothermBrachionus plicatilisexperimental evolutionbody size
researchProduct

2019

Trade-offs have been shown to play an important role in the divergence of mating strategies and sexual ornamentation, but their importance in explaining warning signal diversity has received less attention. In aposematic organisms, allocation costs of producing the conspicuous warning signal pigmentation under nutritional stress could potentially trade-off with life-history traits and maintain variation in warning coloration. We studied this with an aposematic herbivore Arctia plantaginis (Arctiidae), whose larvae and adults show extensive variation in aposematic coloration. In larvae, less melanic coloration (i.e. larger orange patterns) produces a more efficient warning signal against pre…

0106 biological sciencesPhenotypic plasticityLarvaHerbivoreLow protein010604 marine biology & hydrobiologyMelanismZoologyAposematismBiology010603 evolutionary biology01 natural sciencesLife history theoryAnimal Science and ZoologyGene–environment interactionEcology Evolution Behavior and SystematicsJournal of Animal Ecology
researchProduct

Measuring phenotypes in fluctuating environments

2020

Despite considerable theoretical interest in how the evolution of phenotypic plasticity should be shaped by environmental variability and stochasticity, how individuals actually respond to these aspects of the environment within their own lifetimes remains unclear. We propose that this understanding has been hampered by experimental approaches that expose organisms to fluctuating environments (typically treatments where fluctuations in the environment are cyclical vs. erratic) for a pre‐determined duration while ensuring that the mean environment over that the entire exposure period is invariable. This approach implicitly assumes that responses to the mean and variance/predictability in the…

0106 biological sciencesPhenotypic plasticitybiologyfungiConfoundingDaphnia magnabiology.organism_classification010603 evolutionary biology01 natural sciencesDaphniaHeat toleranceEnvironment variableStatisticsPredictabilityMean radiant temperatureEcology Evolution Behavior and Systematics010606 plant biology & botanyFunctional Ecology
researchProduct