Search results for " precession"

showing 10 items of 43 documents

Effetti della concimazione azotata e della precessione colturale sul frumento tenero (Triticum aestivum L.)

2009

Concimazione N Precessione Triticum aestivumSettore AGR/02 - Agronomia E Coltivazioni Erbacee
researchProduct

Application of delta recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes

2013

δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now availa…

Diffraction[delta] recycling; direct methods; structure solution; electron diffraction; automated diffraction tomography; nano electron diffraction; precession electron diffraction; nanocrystals.Reflection high-energy electron diffractionMaterials scienceGas electron diffractionAnalytical chemistrydirect methodsDiffraction tomographyprecession electron diffractionElectron diffractionnanocrystalsStructural BiologyDirect methodsstructure solutionautomated diffraction tomographynano electron diffractionPrecession electron diffractionelectron diffractionElectron backscatter diffraction[delta] recycling
researchProduct

Motion of an electric charge in a terrestrial laboratory.

1995

The equation of motion for a charge in an electromagnetic field is written in the Fermi coordinates of an observer moving with a constant acceleration g=9.8 m/${\mathrm{s}}^{2}$ (${10}^{\mathrm{\ensuremath{-}}18}$ ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ in units such that c=1). This is involved in the equation of motion not only as a Newtonian term g\ensuremath{\rightarrow}, but also as a relativistic correction of the form ``-2(g\ensuremath{\rightarrow}\ensuremath{\cdot}v\ensuremath{\rightarrow})v\ensuremath{\rightarrow}.'' We have studied the effect of this term under the conditions of an accelerator of particles. To this end, we have considered a constant and uniform magnetic field, a…

Electromagnetic fieldPhysicsLarmor precessionParticle physicsElectric fieldEquations of motionFermi coordinatesCharge (physics)Atomic physicsElectric chargeMagnetic fieldPhysical review. D, Particles and fields
researchProduct

Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations

2022

Abstract The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale ( > 5 ‰ ) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmi…

Extinction eventeccentricity and precessionHirnantian glaciationosmium ( Os/ Os) and lithium (δ Li) isotopesGeologic recordorbital obliquityPaleontologysilicate weatheringGeophysicsIsotopes of carbonGeochemistry and PetrologySpace and Planetary SciencePhanerozoicOrdovicianEarth and Planetary Sciences (miscellaneous)Sedimentary rockGlacial periodGlobal coolingGeologySilurian palaeoclimate
researchProduct

Episodic memories: how do the hippocampus and the entorhinal ring attractors cooperate to create them?

2020

AbstractThe brain is capable of registering a constellation of events, encountered only once, as an episodic memory that can last for a lifetime. As evidenced by the clinical case of the patient HM, memories preserving their episodic nature still depend on the hippocampal formation, several years after being created, while semantic memories are thought to reside in neocortical areas. The neurobiological substrate of one-time learning and life-long storing in the brain, that must exist at the cellular and circuit level, is still undiscovered. The breakthrough is delayed by the fact that studies jointly investigating the rodent hippocampus and entorhinal cortex are mostly targeted at understa…

Functional observationsComputer sciencehippocampusCognitive NeuroscienceNeuroscience (miscellaneous)Hippocampusgrid cellsHippocampal formationlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineDevelopmental NeuroscienceEncoding (memory)Semantic memoryEpisodic memorylcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biology0303 health sciencesentorhinal cortexepisodic memoryphase precessionEntorhinal cortexplasticityClinical caseNeuroscience030217 neurology & neurosurgery
researchProduct

Optimal control of the inversion of two spins in Nuclear Magnetic Resonance

2012

International audience; We investigate the optimal control of the inversion of two spin 1/2 particles in Nuclear Magnetic Resonance. The two spins, which differ by their resonance offset, are controlled by the same radio frequency magnetic field. Using the Pontryagin Maximum Principle, we compute the optimal control sequence which allows to reach the target state in a given time, while minimizing the energy of the magnetic field. A comparison with the time-optimal solution for bounded control amplitude realizing the same control in the same time is made. An experimental illustration is done using techniques of Nuclear Magnetic Resonance.

Larmor precessionPhysics010304 chemical physicsSpinsPulsed EPRGeneral Physics and AstronomyBROAD-BAND EXCITATIONOptimal control01 natural sciencesNMRMagnetic fieldPULSESFree induction decayNuclear magnetic resonance2-LEVEL QUANTUM-SYSTEMSBloch equationsOPTIMAL-CONTROL DESIGN0103 physical sciencesRadio frequencyPhysical and Theoretical Chemistry010306 general physicsPOPULATION
researchProduct

Measurement of the Permanent Electric Dipole Moment of the $^{129}$Xe Atom

2019

We report on a measurement of the $CP$-violating permanent electric dipole moment (EDM) of the neutral $^{129}\mathrm{Xe}$ atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized $^{3}\mathrm{He}$ and $^{129}\mathrm{Xe}$ samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400 nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result $(\ensuremath{-}4.7\ifmmode\pm\else\textpm\fi{}6.4)\ifmmode\t…

Larmor precessionPhysicsField (physics)Atomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciences010305 fluids & plasmasMagnetic fieldPhysics - Atomic PhysicsElectric dipole momentElectric field0103 physical sciencesAtomddc:530Sensitivity (control systems)Atomic physics010306 general physicsSpin (physics)
researchProduct

Probing Lorentz invariance and other fundamental symmetries in3He/129Xe clock-comparison experiments

2011

We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. Characteristic spin precession times T*2 of up to 60 h were measured in low magnetic fields (about 1μT) and in the regime of motional narrowing. With the detection of the free precession of co-located 3He/129Xe nuclear spins (clock comparison), the device can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out in the weighted frequency difference, i.e., Δω = ωHe− γHe/γXe·ωXe. We report on searches …

Larmor precessionPhysicsHistorySpin polarizationLorentz covarianceComputer Science ApplicationsEducationMagnetic fieldThomas precessionClassical mechanicsQuantum electrodynamicsPrecessionSpin (physics)Magnetic dipoleJournal of Physics: Conference Series
researchProduct

Spin dynamics in the single-ion magnet [Er(W5O18)2]9−

2018

In this work we present a detailed NMR and ${\ensuremath{\mu}}^{+}\mathrm{SR}$ investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet ${[\mathrm{Er}{({\mathrm{W}}_{5}{\mathrm{O}}_{18})}_{2}]}^{9\ensuremath{-}}$. The $^{1}\mathrm{H}\phantom{\rule{0.16em}{0ex}}\mathrm{NMR}$ absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of t…

Larmor precessionPhysicsMuonMagnetic momentMagnetism02 engineering and technologyMuon spin spectroscopy021001 nanoscience & nanotechnology01 natural sciencesDipolesymbols.namesake0103 physical sciencessymbolsAtomic physics010306 general physics0210 nano-technologyHamiltonian (quantum mechanics)Local fieldPhysical Review B
researchProduct

Anomalous Muon Knight Shift Behavior in a Cd Single Crystal

1983

For the positive muon implanted in a metal the precession frequency shift due to hyperfine fields can be measured with high precision. This provides means to obtain information about the local electronic structure of a hydrogen like impurity in any metal in the indefinitely dilute impurity concentration. Ref. 1 gives a summary of the muon Knight shift (KS) investigations in 18 nontransition (simple) metals and some transition metals and discusses the results in the context of the electronic structure of hydrogen in metals.

Larmor precessionPhysicsMuonTransition metalCondensed matter physicsImpurityCondensed Matter::Strongly Correlated ElectronsContext (language use)Knight shiftElectronic structureHyperfine structure
researchProduct