Search results for " program"
showing 10 items of 3075 documents
Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models
2020
Variable fixing by reduced costs is a popular technique for accelerating the solution process of mixed-integer linear programs. For vehicle-routing problems solved by branch-price-and-cut algorithms, it is possible to fix to zero the variables associated with all routes containing at least one arc from a subset of arcs determined according to the dual solution of a linear relaxation. This is equivalent to removing these arcs from the network used to generate the routes. In this paper, we extend this technique to routes containing sequences of two arcs. Such sequences or their arcs cannot be removed directly from the network because routes traversing only one arc of a sequence might still b…
Relative Reachability Analysis as a Tool for Urban Mobility Planning
2019
There is a plethora of user-oriented route planning applications and systems that enable the computation of the fastest journey between two locations using different transportation modes, e.g., car, public transport, walking, bicycle. While useful for individuals, they are of limited interest to a class of users that may be interested in a more global and comparative view of transportation systems in general. In this context, we adopt the view of an urban planner. Urban planners may be interested in queries such as "if a new transit stop was to be introduced in a given location, would that bring the travel time to a given point-of-interest (POI) or area-of-interest (AOI) by bus closer to th…
A more efficient cutting planes approach for the green vehicle routing problem with capacitated alternative fuel stations
2021
AbstractThe Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations assumes that, at each station, the number of vehicles simultaneously refueling cannot exceed the number of available pumps. The state-of-the-art solution method, based on the generation of all feasible non-dominated paths, performs well only with up to 2 pumps. In fact, it needs cloning the paths between every pair of pumps. To overcome this issue, in this paper, we propose new path-based MILP models without cloning paths, for both the scenario with private stations (i.e., owned by the fleet manager) and that with public stations. Then, a more efficient cutting plane approach is designed for addressing both…
Exact solution of the soft-clustered vehicle-routing problem
2020
Abstract The soft-clustered vehicle-routing problem (SoftCluVRP) extends the classical capacitated vehicle-routing problem by one additional constraint: The customers are partitioned into clusters and feasible routes must respect the soft-cluster constraint, that is, all customers of the same cluster must be served by the same vehicle. In this article, we design and analyze different branch-and-price algorithms for the exact solution of the SoftCluVRP. The algorithms differ in the way the column-generation subproblem, a variant of the shortest-path problem with resource constraints (SPPRC), is solved. The standard approach for SPPRCs is based on dynamic-programming labeling algorithms. We s…
New exact methods for the time-invariant berth allocation and quay crane assignment problem
2019
Abstract Efficient management of operations in seaport container terminals has become a critical issue, due to the increase in maritime traffic and the strong competition between ports. In this paper we focus on two seaside operational problems: the Berth Allocation Problem and the Quay Crane Assignment Problem, which are considered in an integrated way. For the continuous BACAP problem with time-invariant crane assignment we propose a new mixed integer linear model in which the vessels can be moored at any position on the quay, not requiring any quay discretization. The model is enhanced by adding several families of valid inequalities. The resulting model is able to solve instances with u…
The berth allocation problem in terminals with irregular layouts
2019
As international trade thrives, terminals attempt to obtain higher revenue while coping with an increased complexity with regard to terminal management operations. One of the most prevalent problems such terminals face is the Berth Allocation Problem (BAP), which concerns allocating vessels to a set of berths and time slots while simultaneously minimizing objectives such as total stay time or total assignment cost. Complex layouts of real terminals introduce spatial constraints which limit the mooring and departure of vessels. Although significant research has been conducted regarding the BAP, these real-world restrictions have not been taken into account in a general way. The present work …
Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster
2017
Abstract With their paper “Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints” [Discrete Optimization 3, 2006, pp. 255–273] Righini and Salani introduced bounded bidirectional dynamic programming (DP) as an acceleration technique for solving variants of the shortest path problem with resource constraints (SPPRC). SPPRCs must be solved iteratively when vehicle routing and scheduling problems are tackled via Lagrangian relaxation or column-generation techniques. Righini and Salani and several subsequent works have shown that bounded bidirectional DP algorithms are often superior to their monodirectional counterparts, s…
Determining the best shipper sizes for sending products to customers
2014
A distribution company has to send products, packed into shippers, from the warehouse to retail shops. The number of different shipper types is regarded as a parameter given by the user, who is looking for a balance between transportation costs and stock and procurement costs. The problem is to decide the sizes of the shipper types to keep at the warehouse so as to minimize the cost of meeting the forecasted demand over the planning horizon. In this paper, we describe an integer linear programming formulation for the problem and obtaining feasible solutions. Other models, based on multiknapsack and p-median and facility location models, are for obtaining lower bounds. We study several ways …
Cimo: An efficient 2-phases calculator of multimodal itineraries for real trans-territories based on a dynamic programming
2015
In this work we propose an exact solution for calculating multimodal itinerary. This solution is named Cimo (Calculateur d'Itineraires Multimodaux Ordonnes). Cimo is an exact optimal itineraries' calculator wherein itineraries are sorted, multimodal, and trans-territorial. The solution is based on a dynamic programming algorithm "cut", "price" and "share". This solution is multi-objectives and multi-constraints. Several versions of this algorithm are proposed following a methodological approach that enables evaluation of efficiency and complexity's gain : through theoretical calculus and benchmarks. In the first version of realistic problem, we propose a solution with itineraries calculated…
Competition and cooperation for intermodal container transhipment: A network optimization approach
2018
Abstract This study presents an analysis of cross-border competition and cooperation between ports in Bangladesh and India. Nepal and Bhutan are countries without access to seaports — two landlocked countries in South Asia, depending solely on the Indian port of Kolkata for their international seaborne trade. Alternatives do exist in the Bangladeshi ports of Chittagong and Mongla but these are not exploited, in spite of trade agreements that allow access to a third country's port, and/or crossing the land of a third, intermediate, country. We formulate a mixed integer linear programming optimization model to find the optimum economic benefit of port users (serving Bhutan, Nepal and Northeas…