Search results for " pulsar"

showing 10 items of 119 documents

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data

2019

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …

AstronomyAstrophysicsRotation01 natural sciencesrotationGravitation Cosmology & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldscontinuous gravitational waveLIGOneutron starGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEPhysicsPhysical SystemsAmplitudeGeneral relativitygravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical Phenomenacontinuous gravitational waves; Advanced LIGOcontinuous gravitational wavesasymmetryGravitationNeutron stars & pulsarsGeneral relativityFrequency bandmedia_common.quotation_subjectgr-qcFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational waves0103 physical sciencesAdvanced LIGOddc:530Gravitation Cosmology & Astrophysics010306 general physicsgravitational radiation: frequencySTFCgravitational wavesneutron starsGravitational wave sourcesScience & TechnologyGravitational wave sources Gravitational waves Physical Systems Neutron stars and pulsars Gravitational wave detection010308 nuclear & particles physicsGravitational waveRCUKGravitational Wave PhysicsLIGONeutron stars & pulsarsNeutron starSkyNeutron stars and pulsarsDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

OBSERVATION OF THE TeV GAMMA-RAY SOURCE MGRO J1908+06 WITH ARGO-YBJ

2012

The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysicsgeneral – pulsars: individual (MGRO J1908+06) [gamma rays]7. Clean energy01 natural sciencesPulsar wind nebulaLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicspulsarPhysics010308 nuclear & particles physicsgamma rays: general – pulsars: individual (MGRO J1908+06)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysics(MGRO J1908+06)Air showerCrab Nebula13. Climate actionSpace and Planetary Sciencegamma rayMilagroHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

2018

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

Astrophysics::High Energy Astrophysical PhenomenaBrown dwarfFOS: Physical sciencesgeneral; stars: neutron; X-rays: binaries; accretion accretion disks [binaries]AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesstars: neutronSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsOrbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsOrbital periodX-rays: binarieNeutron starbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440

2018

SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminositySettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAccretion accretion disc010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicCoronaX-rays: binarieNeutron starX-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021Space and Planetary ScienceElectron temperaturebinaries; X-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; X-rays]Astrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

2012

We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsCompact star01 natural sciencesSpectral lineidentification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binaries [line]GravitationSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsline: identification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binariesAstronomyAstronomy and AstrophysicsRadiusAccretion (astrophysics)Neutron starAmplitudeSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars

2020

arXiv:2012.01346v1

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsMagnetarQuantitative Biology::OtherComputer Science::Digital Libraries01 natural sciencesNeutron starsX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesMagnetarsAccretion disks magnetars neutron stars pulsar X-rays:binaries X-rays:burstseducationX-rays: bursts010303 astronomy & astrophysicsPulsarsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_study010308 nuclear & particles physicsCrab PulsarAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsAccretion (astrophysics)Neutron starSpace and Planetary ScienceAccretion disksSpin-upAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The near-IR counterpart of IGR J17480-2446 in Terzan 5

2012

Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observ…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsarpulsars: general pulsars: individual: IGR J17480-2446 binaries: close globular clusters: individual: Terzan 5Cluster (physics)Astrophysics::Solar and Stellar AstrophysicseducationStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studygeneral pulsars: individual: IGR J17480-2446 binaries: close globular clusters: individual: Terzan 5 [pulsars]Astronomy and AstrophysicsGalaxyAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceGlobular clusterAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Radio Emission from Sgr A*: Pulsar Transits Through the Accretion Disc

2017

Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesElectronAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesBinary pulsarsymbols.namesakePulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySupermassive black holeAstronomyAstronomy and AstrophysicsAccretion (astrophysics)GalaxyLorentz factorSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

2016

We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for si…

Astrophysics::High Energy Astrophysical PhenomenaPulsar planetEnergy fluxFOS: Physical sciencesGamma-rays: starAstrophysics01 natural sciencesBinary pulsarSettore FIS/05 - Astronomia E AstrofisicaSpitzer Space TelescopePulsarMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomyAstronomy and AstrophysicsStars: neutronStars: individual: SAX J1808.4-3658Space and Planetary ScienceOrbital motionstars; Stars: individual: SAX J1808.4-3658; Stars: neutron; Space and Planetary Science; Astronomy and Astrophysics [Gamma-rays]Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct