Search results for " quantum field theory"

showing 10 items of 40 documents

Quantum transport and the phase space structure of the Wightman functions

2019

We study the phase space structure of exact quantum Wightman functions in spatially homogeneous, temporally varying systems. In addition to the usual mass shells, the Wightman functions display additional coherence shells around zero frequency $k_0=0$, which carry the information of the local quantum coherence of particle-antiparticle pairs. We find also other structures, which encode non-local correlations in time, and discuss their role and decoherence. We give a simple derivation of the cQPA formalism, a set of quantum transport equations, that can be used to study interacting systems including the local quantum coherence. We compute quantum currents created by a temporal change in a par…

High Energy Physics - TheoryNuclear and High Energy PhysicsAstrophysics and AstronomyLEPTOGENESISCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum decoherencegr-qcFOS: Physical sciencesSemiclassical physicsGeneral Relativity and Quantum Cosmology (gr-qc)114 Physical sciences01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityThermal Field Theory010306 general physicsQuantumELECTROWEAK BARYOGENESISParticle Physics - PhenomenologyPhysicsThermal quantum field theory010308 nuclear & particles physicsGeneral Relativity and Cosmologyhep-thhep-phFermionFERMIONSBaryogenesisHigh Energy Physics - PhenomenologyCP violationClassical mechanicsHigh Energy Physics - Theory (hep-th)Phase spaceastro-ph.COlcsh:QC770-798Quantum Dissipative SystemsParticle Physics - TheoryAstrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)
researchProduct

Revising the Predictions of Inflation for the Cosmic Microwave Background Anisotropies

2009

4 pages, 1 figure.-- PACS nrs.: 98.70.Vc; 11.10.Gh; 98.80.Cq.-- ArXiv pre-print available at: http://arxiv.org/abs/0901.0439

High Energy Physics - TheoryParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Scalar (mathematics)Cosmic microwave backgroundFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)[PACS] Cosmic background radiations01 natural sciencesGeneral Relativity and Quantum CosmologySpectral lineRenormalizationHigh Energy Physics - Phenomenology (hep-ph)[PACS] Particle-theory and field-theory models of the early UniverseQuantum mechanics0103 physical sciencesQuantum field theory010306 general physicsPhysicsInflation (cosmology)010308 nuclear & particles physicsSpectral densityCMB cold spot3. Good healthHigh Energy Physics - Phenomenology[PACS] Renormalization in quantum field theoryHigh Energy Physics - Theory (hep-th)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Spatial correlations of field observables in two half-spaces separated by a movable perfect mirror

2023

We consider a system of two cavities separated by a reflecting boundary of finite mass that is free to move, and bounded to its equilibrium position by a harmonic potential. This yields an effective mirror-field interaction, as well as an effective interaction between the field modes mediated by the movable boundary. Two massless scalar fields are defined in each cavity. We consider the second-order interacting ground state of the system, that contains virtual excitations of both mirror's degrees of freedom and of the scalar fields. We investigate the correlation functions between field observables in the two cavities, and find that the squared scalar fields in the two cavities, in the inte…

High Energy Physics - TheoryQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciHigh Energy Physics - Theory (hep-th)FOS: Physical sciencesVacuum Field Fluctuations Dynamical Casimir Effect Quantum Field TheoryQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della Materia
researchProduct

Implementing the three-particle quantization condition including higher partial waves

2019

We present an implementation of the relativistic three-particle quantization condition including both $s$- and $d$-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, $\mathcal{K}_{\mathrm{df,3}}$, which is a generalization of the effective range expansion of the two-particle K matrix, $\mathcal{K}_2$. Relativistic invariance plays an important role in this expansion. We find that $d$-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the …

Nuclear and High Energy PhysicsNuclear TheoryAtomic Physics (physics.atom-ph)Relativistic invarianceFOS: Physical sciencesLattice QCD01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)Quantization (physics)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound statelcsh:Nuclear and particle physics. Atomic energy. RadioactivityQuadratic orderScattering Amplitudes010306 general physicsNuclear theoryCondensed Matter - Statistical MechanicsK matrixMathematical physicsPhysicsLattice Quantum Field TheoryStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDScattering amplitudeHigh Energy Physics - Phenomenologylcsh:QC770-798Journal of High Energy Physics
researchProduct

Distribution Amplitudes of Heavy-Light Mesons

2019

A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the $B$-meson distribution is particularly important in treatments of exclusive $B$-decays using effective field theory and the factorisation formalism; and its value is therefore computed: $\lambda_B(\zeta = 2\,{\rm GeV}) = 0.54(3)\,$GeV. As an example and in anticipation of precision measurements at new-generation $B$-factories, the branching fraction for the rare $B\to \gamma(E_\gamma) \ell \nu_\ell$ radiative decay is also calculated…

Nuclear and High Energy PhysicsParticle physicsMesonNuclear TheoryAstrophysics::High Energy Astrophysical PhenomenaInverseFOS: Physical sciencesHeavy-light mesons01 natural sciencesParton distribution amplitudesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesBound stateNonperturbative continuum methods in quantum field theoryEffective field theoryQuantum field theory010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyB-meson decayslcsh:QC1-999High Energy Physics - PhenomenologyAmplitudeHigh Energy Physics::Experimentlcsh:PhysicsQuantum chromodynamics
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct

Linear response theory: many-body formulation

2013

PhysicsFluctuation-dissipation theoremClassical mechanicsThermal quantum field theoryQuantum mechanicsKubo formulaMany-body theoryQuantum gravityGauge theorySecond quantizationQuantum
researchProduct

Bose-Fermi equivalence and interacting string field theory

1995

Abstract We show that the bosonic and the fermionic realization of the ghost vertex in the Half-String (HS) Operator approach to Witten's String Field Theory (WSFT) are equivalent. In the process we discover that higher vertices (i.e., N > 3) can be eliminated in WSFT using only the overlap conditions defining the interaction vertex and ghost number counting.

PhysicsHeterotic string theoryBosonizationNuclear and High Energy PhysicsCompactification (physics)High Energy Physics::LatticeFísicaString field theoryRelationship between string theory and quantum field theoryVertex (geometry)Non-critical string theoryHigh Energy Physics::TheoryQuantum mechanicsString cosmologyParticle Physics - TheoryMathematical physics
researchProduct

String fields as limit of functions and surface terms in string field theory

1989

We consider the String Field Theory proposed by Witten in the discretized approach, where the string is considered as the limit N → ∞ of a collection of N points. In this picture the string functional is the limit of a succession of functions of an increasing number of variables; an object with some resemblances to distributions. Attention is drawn to the fact that the convergence is not of the uniform kind, and that therefore exchanges of limits, sums and integral signs can cause problems, and be ill defined. In this context we discuss some surface terms found by Woodard, which arise in integrations by parts, and argue that they depend crucially on the choice of the successions of functio…

PhysicsNuclear and High Energy PhysicsCompactification (physics)DiscretizationFísicaAstronomy and AstrophysicsString field theoryTopological string theoryRelationship between string theory and quantum field theoryAtomic and Molecular Physics and OpticsNon-critical string theoryTheoretical physicsQuantum mechanicsString cosmologyBoundary value problem
researchProduct

THE SPACE OF STRING CONFIGURATIONS IN STRING FIELD THEORY

1990

In this paper we consider the set of maps from the interval [0, π] which constitute the argument of the functionals of a String Field Theory. We show that in order to correctly reproduce results of the dual model one has to include all square integrable functions in the functional integral, or Ω0 in terms of Sobolev spaces.

PhysicsNuclear and High Energy PhysicsCompactification (physics)FísicaAstronomy and AstrophysicsString field theoryType I string theoryRelationship between string theory and quantum field theoryAtomic and Molecular Physics and OpticsSobolev spaceNon-critical string theoryTheoretical physicsClassical mechanicsSquare-integrable functionString cosmologyInternational Journal of Modern Physics A
researchProduct