Search results for " relativity"

showing 10 items of 1158 documents

General Solution for Self-Gravitating Spherical Null Dust

1997

We find the general solution of equations of motion for self-gravitating spherical null dust as a perturbative series in powers of the outgoing matter energy-momentum tensor, with the lowest order term being the Vaidya solution for the ingoing matter. This is done by representing the null-dust model as a 2d dilaton gravity theory, and by using a symmetry of a pure 2d dilaton gravity to fix the gauge. Quantization of this solution would provide an effective metric which includes the back-reaction for a more realistic black hole evaporation model than the evaporation models studied previously.

PhysicsShock waveHigh Energy Physics - TheoryNuclear and High Energy PhysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyQuantization (physics)High Energy Physics::TheoryGeneral Relativity and Quantum CosmologyClassical mechanicsSolution of equationsHigh Energy Physics - Theory (hep-th)DilatonHawking radiationGauge fixing
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

A "imunidade soberana" de Pinochet contestada

2000

Um observador privilegiado e participante do processo que levou à quebra da "imunidade soberana" do ex-ditador chileno Augusto Pinochet expõe como e em nome do que isso ocorreu. A privileged observer of, as well as a participant in, the process that resulted in the breaking of the "sovereign immunity" of Chiles former dictator Augusto Pinochet tells how and in the name of what this happened.

Sociology and Political ScienceLawPolitical sciencePinochet/julgamentoDictatorSovereign immunityObserver (special relativity)PinochetChileChile/direitos humanos
researchProduct

Soldner, Einstein, gravitational light deflection and factors of two

2021

GravitationPhysicssymbols.namesakeClassical mechanics510 MathematicsDeflection (physics)General relativity530 PhysicssymbolsGeneral Physics and Astronomy510 MathematikEinstein530 Physik
researchProduct

Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in $\Lambda$CDM

2018

We explore cosmological constraints on the sum of the three active neutrino masses $M_{\nu}$ in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift $z$ by $w(z)=w_0+w_a\,z/(1+z)$, and satisfying $w(z)\geq-1$ for all $z$. We perform a Bayesian analysis and show that, within these models, the bounds on $M_{\nu}$ \textit{do not degrade} with respect to those obtained in the $\Lambda$CDM case; in fact the bounds are slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of $w_0\,,w_a$ such that $w(z)\geq-1$ (but not $w=-1$ for all $z$), the upper limit on $M…

High Energy Physics - PhenomenologyAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum CosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Universal Relations for Gravitational-Wave Asteroseismology of Protoneutron Stars

2019

State-of-the-art numerical simulations of core-collapse supernovae reveal that the main source of gravitational waves is the excitation of proto-neutron star modes during post-bounce evolution. In this work we derive universal relations that relate the frequencies of the most common oscillation modes observed, i.e. g-modes, p-modes and the f-mode, with fundamental properties of the system, such as the surface gravity of the proto-neutron star or the mean density in the region enclosed by the shock. These relations are independent of the equation of state, the neutrino treatment, and the progenitor mass and hence can be used to build methods to infer proto-neutron star properties from gravit…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Equation of stateGravitational waveOscillationAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Surface gravity01 natural sciencesAsteroseismologyGeneral Relativity and Quantum CosmologyStarsSupernova0103 physical sciencesNeutrino010306 general physicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Classification of gravitational-wave glitches via dictionary learning

2018

We present a new method for the classification of transient noise signals (or glitches) in advanced gravitational-wave interferometers. The method uses learned dictionaries (a supervised machine learning algorithm) for signal denoising, and untrained dictionaries for the final sparse reconstruction and classification. We use a data set of 3000 simulated glitches of three different waveform morphologies, comprising 1000 glitches per morphology. These data are embedded in non-white Gaussian noise to simulate the background noise of advanced LIGO in its broadband configuration. Our classification method yields a 96% accuracy for a large range of initial parameters, showing that learned diction…

Physics and Astronomy (miscellaneous)Noise reductionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Data_CODINGANDINFORMATIONTHEORY01 natural sciencesGeneral Relativity and Quantum CosmologyBackground noiseTransient noisesymbols.namesake0103 physical sciencesWaveformAstrophysics::Solar and Stellar Astrophysics010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPattern recognitionLIGOGlitchGaussian noisesymbolsArtificial intelligenceAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

2010

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or mor…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhotonSpectrometerAstrophysics::High Energy Astrophysical PhenomenaElectron shellFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyRelativistic diskSpectral lineaccretion accretion disks black hole physics instrumentation spectrographs methods analytical X-rays binariesNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceEmission spectrumAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSpectroscopyAstrophysics::Galaxy Astrophysics
researchProduct

The Quantum Scalar Field in Spherically Symmetric Loop Quantum Gravity

2013

We consider the quantization of a spherically symmetric gravitational system coupled to a massless scalar field within the loop quantum gravity framework. Our results rely on the uniform discretizations method developed during the last years. We minimize the associated discrete “master constraint” using a trial state whose gravitational part is peaked around the classical Schwarzschild solution.

PhysicsGeneral Relativity and Quantum CosmologyQuantization (physics)Quantum geometryClassical mechanicsSpin foamQuantum gravitySemiclassical gravityLoop quantum gravityScalar fieldLoop quantum cosmology
researchProduct

Cuckoo's Eggs in Neutron Stars: Can LIGO Hear Chirps from the Dark Sector?

2018

We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the dynamics of binary inspirals due to such a force are not possible if the dark matter is accrued during ordinary stellar evolution. Constraints arise from the requirement that the astronomical body be able to collect and bind at small enough radius an adequate number of dark matter particles, from the requ…

Nuclear and High Energy PhysicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectgr-qcDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsStellar evolutionmedia_commonParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsStar formationGravitational wavehep-exGeneral Relativity and CosmologyFifth forcehep-phCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyNeutron starBeyond Standard Modelastro-ph.COlcsh:QC770-798Particle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct