Search results for " scheduling"
showing 10 items of 158 documents
Time reduction for completion of a civil engineering construction using fuzzy clustering techniques
2017
In the civil engineering field, there are usually unexpected troubles that can cause delays during execution. This situation involves numerous variables (resource number, execution time, costs, working area availability, etc.), mutually dependent, that complicate the definition of the problem analytical model and the related resolution. Consequently, the decision-maker may avoid rational methods to define the activities that could be conveniently modified, relying only on his personal experience or experts’ advices. In order to improve this kind of decision from an objective point of view, the authors analysed the operation correction using a data mining technique, called Fuzzy Clustering. …
Gain Scheduling H 2 / H ∞ Structural Control of a Floating Wind Turbine
2014
Abstract For wind turbine load mitigation, this paper proposes an active structural control deign of a hybrid mass damper installed at the tower top of a spar-type floating wind turbine. System dynamic model is established based on first principles and the polynomial curve fitting approach, while different steady-state points are derived. Then, a gain scheduling H 2 / H ∞ state feedback controller is designed by solving linear matrix inequalities, which aims to reduce the loading. At last, nonlinear simulations are performed under different wind and wave conditions, and the results demonstrate that more load reduction could be achieved at the expense of more energy consumption in mass dampe…
Application of learning pallets for real-time scheduling by use of artificial neural network
2011
Author's version of a chapter in the book: 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA). Also available from the publisher at: http://dx.doi.org/10.1109/SKIMA.2011.6089986 Generally, this paper deals with the problem of autonomy in logistics. Specifically here, a complex problem in inbound logistics is considered as real-time scheduling in a stochastic shop floor problem. Recently, in order to comply with real-time decisions, autonomous logistic objects have been suggested as an alternative. Since pallets are common used objects in carrying materials (finished or semi-finished), so they have the possibility to undertake the …
LPV models: Identification for gain scheduling control
2001
In this paper the use of discrete-time Linear Parameter Varying (LPV) models for the gain scheduling control and identification methods for non-linear or time-varying system is considered. We report an overview on the existing literature on LPV systems for gain scheduling control and identification. Moreover, assuming that inputs, outputs and the scheduling parameters are measured, and a form of the functional dependence of the coefficients on the parameters is known, we show how the identification problem can be reduced to a linear regression so that a Least Mean Square and Recursive Least Square identification algorithm can be reformulated. Our methodology is applied for the identificatio…
Integrated Approach to Part Scheduling and Inspection Policies for a Job Shop Manufacturing System
2007
The quality of a product greatly depends on the quality of its components. This requires that manufacturing specifications have to be met in the manufacturing environment and as a consequence inspection stations are present in many manufacturing systems and inspection policies must be adopted. One problem, which has been widely investigated, concerns the detection of the inspection points in the hypothesis that the action to be taken is known when a defective part is detected. If different jobs are to be produced, then operation scheduling becomes yet another complex problem needing to be solved. And while the problem of scheduling has received a great amount of attention from researchers, …
Nonlinear Control of a Pneumatic Muscle Actuator System
2001
Abstract The performance of a Pneumatic Muscle Actuator under three tracking control strategies is compared: robust backstepping, sliding-mode and gain scheduling. Robustness is assured for the three controllers in the presence of model uncertainties and external perturbations. Exponential stability is proved for the sliding-mode tracking controller, ultimate boundedness for the backstepping tracking controller and exponential stability for constant or slowly-varying reference signals for the gain scheduling controller. Computer simulations show a good performance for the tracking of a sine wave by the first two controllers, although the sliding-mode strategy yields a high-frequency switchi…
A Model-Based Control Strategy for Wind Turbines with Asynchronous Generator
2007
In this paper a model based control methodology is described with reference to a wind turbine for production of alternative energy. The mathematical model of a 600 kW wind turbine is taken into account assuming a well defined profile of the rotor blades. A set of reference angular speeds of the asynchronous generator and a set of reference pitch angles of the blade wind turbine are obtained in order to maximize the extracted wind power and to reach equilibrium conditions between the wind-generated torque and the electric torque of the generator. Finally a PID model based controller is designed and then tested by means of simulation experiments.
LPV Predictive Control of the Stall and Surge for Jet Engine 1
2001
Abstract Predictive control of constrained LPV systems is applied to the model of the stall and surge control for jet engine compressors. The objective of the used technique is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. This is achieved by exploiting invariant sets and a receding horizon optimization procedure which provides on-line a non-linear correction to a gain-scheduled linear feedback designed off-line. A comparison with a contractive gain-scheduling control technique is also shown.
LPV Model Identification For The Stall And Surge Control of a Jet Engine
2001
Abstract The problem of identifying discrete-time Linear Parameter Varying (LPV) models of non-linear or time-varying systems for gain scheduling control is considered assuming that inputs, outputs and the scheduling parameters are measured, and a form of the functional dependence of the coefficients on the parameters is known. The identification procedure is applied to the controlled model of compressors for jet engines. The model is controlled in order to avoid rotating stall and surge. Aim of the present paper is to identify the LPV model based on the nonlinear model of compressors in order to design a robust gain scheduling predictive controller.
Load Optimization in Endurance Sports by Means of Antagonistic Dynamical Models
2012
Abstract Prediction of performance dynamics as well as planning and control of corresponding optimal load profiles are difficult tasks in endurance sports. The reason is that fatigue and recovery are effective with delays. I. e. a small overload in the start phase can cause a collapse long time later. Such interaction between load and performance can be modelled by means of antagonistic models like PerPot and then can help to optimize performance together with avoiding overload. Based on a lot of positive results extensions of PerPot have been developed, which are now able to determine the individual anaerobe threshold (IAT) by simulation, giving heart rate oriented load scheduling a new qu…