Search results for " signal processing"
showing 10 items of 208 documents
Network-Assisted Resource Allocation with Quality and Conflict Constraints for V2V Communications
2018
The 3rd Generation Partnership Project (3GPP) has recently established in Rel. 14 a network-assisted resource allocation scheme for vehicular broadcast communications. Such novel paradigm is known as vehicle--to--vehicle (V2V) \textit{mode-3} and consists in eNodeBs engaging only in the distribution of sidelink subchannels among vehicles in coverage. Thereupon, without further intervention of the former, vehicles will broadcast their respective signals directly to their counterparts. Because the allotment of subchannels takes place intermittently to reduce signaling, it must primarily be conflict-free in order not to jeopardize the reception of signals. We have identified four pivotal types…
Data-Driven Spectrum Cartography via Deep Completion Autoencoders
2019
Spectrum maps, which provide RF spectrum metrics such as power spectral density for every location in a geographic area, find numerous applications in wireless communications such as interference control, spectrum management, resource allocation, and network planning to name a few. Spectrum cartography techniques construct these maps from a collection of measurements collected by spatially distributed sensors. Due to the nature of the propagation of electromagnetic waves, spectrum maps are complicated functions of the spatial coordinates. For this reason, model-free approaches have been preferred. However, all existing schemes rely on some interpolation algorithm unable to learn from data. …
Accurate Graph Filtering in Wireless Sensor Networks
2020
Wireless sensor networks (WSNs) are considered as a major technology enabling the Internet of Things (IoT) paradigm. The recent emerging Graph Signal Processing field can also contribute to enabling the IoT by providing key tools, such as graph filters, for processing the data associated with the sensor devices. Graph filters can be performed over WSNs in a distributed manner by means of a certain number of communication exchanges among the nodes. But, WSNs are often affected by interferences and noise, which leads to view these networks as directed, random and time-varying graph topologies. Most of existing works neglect this problem by considering an unrealistic assumption that claims the…
SHARP: Environment and Person Independent Activity Recognition with Commodity IEEE 802.11 Access Points
2022
In this article we present SHARP, an original approach for obtaining human activity recognition (HAR) through the use of commercial IEEE 802.11 (Wi-Fi) devices. SHARP grants the possibility to discern the activities of different persons, across different time-spans and environments. To achieve this, we devise a new technique to clean and process the channel frequency response (CFR) phase of the Wi-Fi channel, obtaining an estimate of the Doppler shift at a radio monitor device. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment-specific) static objects. SHARP is trained on data collected as a person performs seven differe…
Learning Automata Based Q-learning for Content Placement in Cooperative Caching
2019
An optimization problem of content placement in cooperative caching is formulated, with the aim of maximizing sum mean opinion score (MOS) of mobile users. Firstly, a supervised feed-forward back-propagation connectionist model based neural network (SFBC-NN) is invoked for user mobility and content popularity prediction. More particularly, practical data collected from GPS-tracker app on smartphones is tackled to test the accuracy of mobility prediction. Then, a learning automata-based Q-learning (LAQL) algorithm for cooperative caching is proposed, in which learning automata (LA) is invoked for Q-learning to obtain an optimal action selection in a random and stationary environment. It is p…
Aerial Spectrum Surveying: Radio Map Estimation with Autonomous UAVs
2020
Radio maps are emerging as a popular means to endow next-generation wireless communications with situational awareness. In particular, radio maps are expected to play a central role in unmanned aerial vehicle (UAV) communications since they can be used to determine interference or channel gain at a spatial location where a UAV has not been before. Existing methods for radio map estimation utilize measurements collected by sensors whose locations cannot be controlled. In contrast, this paper proposes a scheme in which a UAV collects measurements along a trajectory. This trajectory is designed to obtain accurate estimates of the target radio map in a short time operation. The route planning a…
Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading
2019
Ambient backscatter communications is an emerging paradigm and a key enabler for pervasive connectivity of low-powered wireless devices. It is primarily beneficial in the Internet of things (IoT) and the situations where computing and connectivity capabilities expand to sensors and miniature devices that exchange data on a low power budget. The premise of the ambient backscatter communication is to build a network of devices capable of operating in a battery-free manner by means of smart networking, radio frequency (RF) energy harvesting and power management at the granularity of individual bits and instructions. Due to this innovation in communication methods, it is essential to investigat…
Iterative Reconstruction of Signals on Graph
2020
We propose an iterative algorithm to interpolate graph signals from only a partial set of samples. Our method is derived from the well known Papoulis-Gerchberg algorithm by considering the optimal value of a constant involved in the iteration step. Compared with existing graph signal reconstruction algorithms, the proposed method achieves similar or better performance both in terms of convergence rate and computational efficiency.
Emergency Detection with Environment Sound Using Deep Convolutional Neural Networks
2020
In this paper, we propose a generic emergency detection system using only the sound produced in the environment. For this task, we employ multiple audio feature extraction techniques like the mel-frequency cepstral coefficients, gammatone frequency cepstral coefficients, constant Q-transform and chromagram. After feature extraction, a deep convolutional neural network (CNN) is used to classify an audio signal as a potential emergency situation or not. The entire model is based on our previous work that sets the new state of the art in the environment sound classification (ESC) task (Our paper is under review in the IEEE/ACM Transactions on Audio, Speech and Language Processing and also avai…
On the Fidelity of IEEE 802.11 commercial cards
2006
The IEEE 802.11 D CF protocol is known to be fair in terms of long-term resource repartition among the contending stations. However, when considering real scenarios, where commercial 802.11 cards interact, very unpredictable as well as sometimes surprising behaviors emerge. Motivation of this paper is to investigate the reasons of the very evident disagreement between the theoretical IEEE 802.11 DCF protocol models and its practical implementations. Inparticular, we try to characterize the card behavior not only in terms of perceived throughput, but also in terms of low-level channel access operations. In fact, the simple throughput analysis does not allow to identify what affecting paramet…