Search results for " signaling."
showing 10 items of 1032 documents
Principles and requirements for stroke recovery science
2020
The disappointing results in bench-to-bedside translation of neuroprotective strategies caused a certain shift in stroke research towards enhancing the endogenous recovery potential of the brain. One reason for this focus on recovery is the much wider time window for therapeutic interventions which is open for at least several months. Since recently two large clinical studies using d-amphetamine or fluoxetine, respectively, to enhance post-stroke neurological outcome failed again it is a good time for a critical reflection on principles and requirements for stroke recovery science. In principal, stroke recovery science deals with all events from the molecular up to the functional and behav…
Impaired calcium homeostasis in aged hippocampal neurons
2009
Abstract Development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease is strongly age-associated. The impairment of calcium homeostasis is considered to be a key pathological event leading to neuronal dysfunction and cell death. However, the exact impact of aging on calcium homeostasis in neurons remains largely unknown. In the present work we have investigated intracellular calcium levels in cultured primary hippocampal neurons from young (2 months) and aged (24 months) rat brains. Upon stimulation with glutamate or hydrogen peroxide aged neurons in comparison to young neurons demonstrated an increased vulnerability to these disease-related toxins. Measurement of c…
Agonist potency differentiates G protein activation and Ca2+ signalling by the orexin receptor type 1.
2005
The G protein coupling characteristics of a flag epitope-tagged orexin receptor type 1 (OX1R) was investigated in HEK293 cells. Immunoprecipitation of the OX1R and immunoblotting revealed interactions with Gq/G11 proteins as well as with Gs and Gi proteins. Stimulation with orexin-A did not affect the ability of the OX1R to coprecipitate Gq/G11 proteins, but it robustly elevated the intracellular concentration of Ca2+, [Ca2+]i. No changes in cAMP levels could be detected upon receptor stimulation. To get further insight into the functional correlation of G protein activation and Ca2+ signalling, we used baculovirus transduction to express chimeric G proteins, containing the Galphas protein …
5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation.
1999
The study was conducted on a human (Jurkat) T cell line, loaded with a Na+ fluorescent probe, SBFI/AM. Serotonin and an agonist of 5-HT3 receptor-channels, 2-methyl-5HT, evoked Na+ influx, whereas the agonists of other serotonergic receptor subtypes, i.e., 5-HT1A and 5-HT1B receptors, failed to induce Na+ influx in these cells. By using 3H-BRL43694, an agonist of 5-HT3 receptor-channels, we characterized 5-HT3 lymphocyte receptors which exhibited a density (Bmax) of 300 +/- 20 fmol/10(6) cells and a Kd of 30 nM in Jurkat T cells. The T-cell 5-HT3 receptor-channel is not regulated either by the protein kinase C or by the free intracellular calcium concentrations as the agents known to activa…
Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling
2014
The generation of excessive amounts of reactive oxygen species (ROS) leads to cellular oxidative stress that underlies a variety of forms of hepatocyte injury and death including that from alcohol. Although ROS can induce cell damage through direct effects on cellular macromolecules, the injurious effects of ROS are mediated largely through changes in signal transduction pathways such as the mitogen-activated protein kinase c-Jun N-terminal kinase (JNK). In response to alcohol, hepatocytes have increased levels of the enzyme cytochrome P450 2E1 (CYP2E1) which generates an oxidant stress that promotes the development of alcoholic steatosis and liver injury. These effects are mediated in larg…
Mucosal immunoregulation: transcription factors as possible therapeutic targets.
2005
Much progress has been recently made with regard to our understanding of the mucosal immune system in health and disease. In particular, it has been shown that uncontrolled mucosal immune responses driven by lymphocytes or non-lymphoid cells may lead to immunological diseases such as allergy, hypersensitivity and inflammation. Thus, a more detailed understanding of mucosal immune regulation and decision making at mucosal surfaces is essential for a better understanding of mucosal immune responses in health and disease. Antigen presenting cells and T lymphocytes play a key role in controlling mucosal immune responses. To deal with this key task, T helper cells differentiate into functionally…
Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous spong…
2012
Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligop…
Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD) due to destruction of pituitary somatotropes.
2011
Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre(+/-), iDTR(+/-) offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre(-/-), iDTR(+/-) mice were used as GH-intact controls. AOiGHD im…
Priming with proangiogenic growth factors and endothelial progenitor cells improves revascularization in linear diabetic wounds
2014
In the present study, we investigated whether proangiogenic growth factors and endothelial progenitor cells (EPCs) induce favourable effects on cutaneous incisional wound healing in diabetic mice. The proangiogenic effects of human EPCs were initially analyzed using a HUVEC in vitro angiogenesis assay and an in vivo Matrigel assay in nude mice (n=12). For the diabetic wound model, 48 Balb/c mice with streptozotocin (STZ)-induced diabetes were divided randomly into 4 groups (12 mice in each group). Subsequently, 3, 5 and 7 days before a 15-mm full-thickness incisional skin wound was set, group 1 was pre-treated subcutaneously with a mixture of vascular endothelial growth factor (VEGF)/basic …
Conductance and Ion Selectivity of a Mesoscopic Protein Nanopore Probed with Cysteine Scanning Mutagenesis
2005
Nanometer-scale proteinaceous pores are the basis of ion and macromolecular transport in cells and organelles. Recent studies suggest that ion channels and synthetic nanopores may prove useful in biotechnological applications. To better understand the structure-function relationship of nanopores, we are studying the ion-conducting properties of channels formed by wild-type and genetically engineered versions of Staphylococcus aureus alpha-hemolysin (alphaHL) reconstituted into planar lipid bilayer membranes. Specifically, we measured the ion selectivities and current-voltage relationships of channels formed with 24 different alphaHL point cysteine mutants before and after derivatizing the c…