Search results for " silica"

showing 10 items of 418 documents

Effects of Pressure, Thermal Treatment, and O2 Loading in MCM41, MSU-H, and MSU-F Mesoporous Silica Systems Probed by Raman Spectroscopy

2015

We present a Raman study of the effects induced by pressure, thermal treatments, and O2 loading in MCM41, MSU-H, and MSU-F representative mesoporous silica. We compared the starting powders with the mechanically pressed tablets produced applying pressures of ∼0.2 and ∼0.45 GPa. The spectra of the three untreated tablets evidence that the main value of the Si-O-Si angle decreases and that in the MCM41 and the MSU-H Si-O-Si hydrolysis occurs, whereas such a process is absent or much less efficient in the MSU-F. Despite their different networks, the three powders tend to crystallize in cristobalite when treatments are at 1000 °C. The MCM41 and MSU-H tablets exhibit behavior similar to their st…

Materials scienceElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica SperimentaleMineralogySurfaces Coatings and FilmThermal treatmentMesoporous silicaCristobaliteSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeHydrolysisGeneral EnergyTridymiteEnergy (all)Chemical engineeringPhase (matter)symbolsMoleculePhysical and Theoretical ChemistryRaman spectroscopy
researchProduct

Supported C60-IL-PdNPs as extremely active nanocatalysts for C-C cross-coupling reactions

2016

A C60-ionic liquid hybrid has been covalently linked to three different solid supports, namely amorphous silica, SBA-15 and Fe2O3@SiO2, and the resulting materials have been employed as covalently supported ionic liquid phases (cSILP) in order to immobilize and stabilize palladium nanoparticles (PdNPs). These novel hybrid materials are based on a sort of "matryoshka" system (PdNPs@imidazolium-salt@C60@support) in which the imidazolium-based moieties have not been directly linked to the surface of the support, but they are present in an octopus-like spatial arrangement on the uniformly surface-distributed fullerenes. These materials have been fully characterized and successfully employed as …

Materials scienceFullerene010405 organic chemistryRenewable Energy Sustainability and the EnvironmentChemistry (all)General ChemistrySettore CHIM/06 - Chimica OrganicaMaterials Science (all) Heterogeneous Catalysis Nanoparticles Suzuki reaction Heck reactioncross coupling010402 general chemistry01 natural sciencesNanomaterial-based catalystCoupling reaction0104 chemical sciencesCatalysischemistry.chemical_compoundChemical engineeringchemistryCovalent bondIonic liquidOrganic chemistryGeneral Materials ScienceAmorphous silicaHybrid material
researchProduct

New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption

2020

A straightforward and economic procedure has been developed for the synthesis of a new polydopamine-like silica-based material that has been obtained by oxidation of catechol with KIO4 followed by reaction with 3-aminopropyltrimethoxysilane. All techniques adopted for characterization showed that the obtained material is rich in different functional groups and the morphological analyses revealed dimensions in the nanometric range. The hybrid material has been characterized by several techniques showing its polydopamine-like nature, and preliminary observations for dye adsorption have been reported.

Materials scienceGeneral Chemical Engineeringdye adsorptionMussel inspiredsilica nanoparticlesSilica nanoparticleslcsh:Chemistrychemistry.chemical_compoundGeneral Materials ScienceRange (particle radiation)CatecholDye adsorptionbioinspired materialsCommunicationDye adsorptionBioinspired materialsSettore CHIM/06 - Chimica Organicacatechol; silica nanoparticles; bioinspired materials; dye adsorptioncatecholSilica nanoparticlesCharacterization (materials science)Chemical engineeringchemistrylcsh:QD1-999CatecholHybrid materialNanomaterials
researchProduct

Molecular structure and multi-body potential of mean force in silica-polystyrene nanocomposites

2018

We perform a systematic application of the hybrid particle-field molecular dynamics technique [Milano et al, J. Chem. Phys. 2009, 130, 214106] to study interfacial properties and potential of mean force (PMF) for separating nanoparticles (NPs) in a melt. Specifically, we consider Silica NPs bare or grafted with Polystyrene chains, aiming to shed light on the interactions among free and grafted chains affecting the dispersion of NPs in the nanocomposite. The proposed hybrid models show good performances in catching the local structure of the chains, and in particular their density profiles, documenting the existence of the "wet-brush-to-dry-brush" transition. By using these models, the PMF b…

Materials scienceGrafting (chemical)Composite numberPhase separationNanoparticleFOS: Physical sciences02 engineering and technologyMolecular dynamicsCondensed Matter - Soft Condensed Matter010402 general chemistry01 natural sciencesNanocompositeschemistry.chemical_compoundMolecular dynamicsGrafting (chemical) Molecular dynamics Nanocomposites Phase separation Plasma interactions SilicaPhysics - Chemical PhysicsMoleculeGeneral Materials SciencePotential of mean forceChemical Physics (physics.chem-ph)NanocompositePlasma interactionsSilicaComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringSoft Condensed Matter (cond-mat.soft)Polystyrene0210 nano-technologyDispersion (chemistry)Physics - Computational Physics
researchProduct

Ge-doped silica nanoparticles: production and characterisation

2016

Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.

Materials scienceLaser ablationScanning electron microscopePhysics::Medical PhysicsDopingSettore FIS/01 - Fisica SperimentalePhysics::Opticschemistry.chemical_elementNanoparticleGermaniumCathodoluminescenceNanotechnology02 engineering and technologyChemical vapor deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsNanomaterialschemistryChemical engineeringnanoparticles point defects doped silica0210 nano-technology
researchProduct

Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material

2008

Abstract Ordered macroporous–mesoporous carbonaceous materials were produced as a direct replica of the Thalassiosira pseudonana diatom by infiltration of the skeleton with furfuryl alcohol. The final carbon-rich material preserves the macropores of the diatom acting as bio-template and new hierarchical macro–mesopores appears as the silica is eliminated through chemical etching. The final solid can be described as an organized array of carbon macrotubes. In order to understand the progressive silica etching and the subsequent effect on the final carbon material, different etching reagents have been used. Moreover, the similar pore topology of T. pseudonana and the well known MCM-41 mesopor…

Materials scienceMacroporebiologyThalassiosira pseudonanaGeneral ChemistryMesoporous silicabiology.organism_classificationIsotropic etchingFurfuryl alcoholchemistry.chemical_compoundDiatomChemical engineeringchemistryReagentGeneral Materials SciencePorous mediumCarbon
researchProduct

Magneto-optical Investigations of Nanostructured Materials Based on Single Molecule Magnets Monitor Strong Environmental Effects

2007

The determination of the magnetic properties of molecular magnets in environments similar to those used in spintronic devices is fundamental for the development of applications. Single-molecule magnets (SMMs) are molecular cluster systems that display magnetic hysteresis of dynamical origin at low temperature. As they behave like perfectly monodisperse nanomagnets and show clear macroscopic quantum effects in their magnetic properties, they are extremely appealing candidates for the forthcoming generation of molecular devices: they have been proposed as efficient systems for quantum computation, ultra-high-density magnetic recording media, and molecular spintronic systems. These attractive …

Materials scienceMagnetismOPTICAL MODESMN12O12(O2CR)(16)(H2O)(4)GOLD SURFACESRELAXATIONNanotechnologySURFACE PHONONSMN-12 NANOMAGNETSCluster (physics)General Materials ScienceThin filmLangmuir-Blodgett filmsSpintronicsMechanical EngineeringMagnetic hysteresisNanomagnetmagnetic hysteresisAmorphous solidIONIC CRYSTAL SLABMESOPOROUS SILICAMagnetic coreMechanics of MaterialsChemical physicsmagnetismcluster compoundsCLUSTERSQUANTUMIONIC CRYSTAL SLAB; MESOPOROUS SILICA; MN-12 NANOMAGNETS; SURFACE PHONONS; OPTICAL MODES; GOLD SURFACES; QUANTUM; MN12O12(O2CR)(16)(H2O)(4); RELAXATION; CLUSTERSLangmuir-Blodgett films; magnetic hysteresis; magnetism; cluster compounds
researchProduct

Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials

2017

Controlled aggregation of polymer-stabilized calcium silicate hydrate nanoparticles leads to elastic cementitious materials.

Materials scienceMaterials ScienceNanoparticle02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundBrittlenessFracture toughnessFlexural strengthElasticity (economics)Calcium silicate hydrateComposite materialMesocrystalResearch ArticlesComputingMilieux_MISCELLANEOUSMultidisciplinarySciAdv r-articles021001 nanoscience & nanotechnology0104 chemical scienceschemistryPhysical Sciencesddc:540Cementitious[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyResearch Article
researchProduct

Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes

1999

Porous materials displaying tailor-made pore sizes and shapes are particularly interesting in a great variety of real and potential applications where molecular recognition is needed, such as shape-selective catalysis, molecular sieving, and selective adsorption. Classically, apart from silica, materials most commonly used for catalysis and catalyst supports have been those based on high surface aluminas, owing to their thermal, chemical, and mechanical stability and their low cost. Earlier aluminas with high surface areas (~500 m/g) had been prepared using structure-directing agents. However, they were X-ray amorphous materials and their porosity was purely textural, characterized by wide …

Materials scienceMechanical EngineeringNanotechnologyMesoporous silicaMicellelaw.inventionChemical engineeringPulmonary surfactantMechanics of MaterialslawSelective adsorptionGeneral Materials ScienceCalcinationThermal stabilityPorosityMesoporous materialAdvanced Materials
researchProduct

Large monolithic silica-based macrocellular foams with trimodal pore system.

2003

Silica-based materials with hierarchical pore systems at three different length scales (small mesopores–large mesopores–macropores) have been prepared through a nanotectonic approach by using mesoporous nanoparticles as building blocks; the resulting materials present a highly accessible foam-like architecture and can be prepared as large monoliths. Huerta Morillo, Lenin Jose, Lenin.Huerta@uv.es ; Latorre Saborit, Julio, Julio.Latorre@uv.es ; Beltran Porter, Aurelio, Aurelio.Beltran@uv.es ; Beltran Porter, Daniel, Daniel.Beltran@uv.es ; Amoros del Toro, Pedro Jose, Pedro.Amoros@uv.es

Materials scienceMonolithic silica-based ; Trimodal pore system ; Different length scalesUNESCO::QUÍMICAMetals and AlloysNanoparticleMineralogyPore systemGeneral ChemistryUNESCO::QUÍMICA::Química macromolecular:QUÍMICA [UNESCO]CatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringMaterials ChemistryCeramics and Composites:QUÍMICA::Química macromolecular [UNESCO]Trimodal pore systemMesoporous materialDifferent length scalesMonolithic silica-basedChemical communications (Cambridge, England)
researchProduct