Search results for " sistema"

showing 10 items of 1921 documents

Dissipative analogies of step-pool features: From rills to mountain streams

2019

Abstract In this paper the dissipative similarity of step-pool units at different spatial scales ranging from rills to streams is analyzed. This investigation benefits from the latest theoretical advances in open channel flow resistance, high-resolution topography from close-range photogrammetry applied to rill erosion and the availability of published data from literature on step-pool streams. At first, the integration of a power velocity distribution allowed to obtain a theoretically-based expression of Darcy-Weisbach friction factor, in which Γ function and δ exponent of the velocity profile are included. Then this theoretically-deduced flow resistance relationship is calibrated and test…

010504 meteorology & atmospheric sciencesFlow (psychology)GeometrySTREAMSPlot measurement01 natural sciencesFlow velocityCalibrationSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_category04 agricultural and veterinary sciencesFunction (mathematics)Open-channel flowRillFlow velocityFlow resistance040103 agronomy & agricultureDissipative systemRill flowSoil erosion0401 agriculture forestry and fisheriesStep-poolGeology
researchProduct

Testing a theoretical resistance law for overland flow on a stony hillslope

2020

Overland flow, sediments, and nutrients transported in runoff are important processes involved in soil erosion and water pollution. Modelling transport of sediments and chemicals requires accurate estimates of hydraulic resistance, which is one of the key variables characterizing runoff water depth and velocity. In this paper, a new theoretical power–velocity profile, originally deduced neglecting the impact effect of rainfall, was initially modified for taking into account the effect of rainfall intensity. Then a theoretical flow resistance law was obtained by integration of the new flow velocity distribution. This flow resistance law was tested using field measurements by Nearing for the …

010504 meteorology & atmospheric sciencesFlow (psychology)rainfall0207 environmental engineering02 engineering and technology01 natural sciencessymbols.namesakeWetted perimeteroverland flowdimensional analysiFroude numberSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali020701 environmental engineering0105 earth and related environmental sciencesWater Science and Technologyself-similarityReynolds numberLaminar flowstony hillslopeFlow velocityLawsymbolsvelocity profileEnvironmental scienceSurface runoffflow resistanceIntensity (heat transfer)
researchProduct

Comparing flow resistance law for fixed and mobile bed rills

2019

Rills caused by run-off concentration on erodible hillslopes have very irregular profiles and cross-section shapes. Rill erosion directly depends on the hydraulics of flow in the rills, which may differ greatly from hydraulics of flow in larger and regular channels. In this paper, a recently theoretically deduced rill flow resistance equation, based on a power–velocity profile, was tested experimentally on plots of varying slopes (ranging from 9% to 26%) in which mobile and fixed bed rills were incised. Initially, measurements of flow velocity, water depth, cross-section area, wetted perimeter, and bed slope, carried out in 320 reaches of mobile bed rills and in 165 reaches of fixed rills, …

010504 meteorology & atmospheric sciencesHydraulicsfixed bedFlow (psychology)0207 environmental engineering02 engineering and technology01 natural scienceslaw.inventionWetted perimetersymbols.namesakelawFroude numberSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalirill hydraulic020701 environmental engineering0105 earth and related environmental sciencesWater Science and Technologygeographysoil erosiongeography.geographical_feature_categoryrill flowplot measurementRillFlow conditionsFlow velocitymobile bedsymbolsflow resistanceSediment transportGeologyHydrological Processes
researchProduct

Laboratory evaluation of falling-head infiltration for saturated soil hydraulic conductivity determination

2020

Falling-head one-dimensional infiltration procedures, such as the simplified falling-head (SFH) technique, yield estimates of saturated soil hydraulic conductivity, Ks, with parsimonious and rapid experiments. Factors that can influence determination of Ks by the SFH technique were tested in the laboratory on three repacked soils differing by particle diameter ranges (0-2000, 0- 105 and 105-2000 mm, respectively). Using the theoretically calculated depth of ponding on the infiltration surface, D, instead of the measured one had a small impact on the Ks calculations (means differing by a factor of 1.1-1.2, depending on the soil). For the finest soil, Ks decreased by 3.1 times as D increased …

010504 meteorology & atmospheric sciencesMechanical Engineeringlcsh:SBioengineering04 agricultural and veterinary scienceslcsh:S1-97201 natural sciencesIndustrial and Manufacturing Engineeringlcsh:AgricultureInfiltration (hydrology)Saturated soil hydraulic conductivityHydraulic conductivityLaboratory investigationFalling-head one-dimensional infiltrationSimplified falling-head techniquesimplified falling-head technique.040103 agronomy & agricultureSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali0401 agriculture forestry and fisheriesEnvironmental scienceGeotechnical engineeringlcsh:Agriculture (General)0105 earth and related environmental sciences
researchProduct

A Plot-scale uncertainty analysis of saturated hydraulic conductivity of a clay soil

2021

Abstract Simulating soil hydrological processes at the plot or field scale requires using spatially representative values of the saturated soil hydraulic conductivity, Ks. Sampling campaigns should yield a reliable mean of Ks with a sustainable workload since measuring Ks at many points is challenging. Uncertainty analysis can be used to determine the lowest number of measurements that yield a mean Ks value with a specified accuracy level. Potential and limitations of this analysis were tested in this investigation for different extents of the sampled area and sampling densities. A clay soil was sampled intensively on two plots (plot area = 44 m2), two dates and using both small (0.15 m in …

010504 meteorology & atmospheric sciencesScale (ratio)0207 environmental engineeringbootstrap methodSampling (statistics)Soil science02 engineering and technology01 natural sciencesConfidence intervalHydraulic conductivitysaturated soil hydraulic conductivityEnvironmental scienceSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalifine-textured soilsFine-textured soilsimplified falling head technique020701 environmental engineeringClay soilUncertainty analysissaturated soil hydraulic conductivity fine-textured soils simplified falling head technique bootstrap method0105 earth and related environmental sciencesWater Science and Technology
researchProduct

Testing simple scaling in soil erosion processes at plot scale

2018

Abstract Explaining scale effects for runoff and erosion improves our understanding and simulation ability of hydrological and erosion processes. In this paper, plot scale effects on event runoff per unit area (Qe), sediment concentration (Ce) and soil loss per unit area (SLe) were checked at El Teularet-Sierra de Enguera experimental site in Eastern Spain. The measurements were carried out for 31 events occurring in the years 2005 and 2007 in bare ploughed plots ranging from 1 to 48 m2. The analysis established the scaling relationship by dimensional analysis and self-similarity theory, and tested this relationship at different temporal scales ranging from event to annual scale. The dimens…

010504 meteorology & atmospheric sciencesScale (ratio)Runoff0208 environmental biotechnologySoil scienceNatural rainfall02 engineering and technology01 natural sciencesHydrology (agriculture)Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliTemporal scalesScaling0105 earth and related environmental sciencesEarth-Surface ProcessesPlotsSedimentPE&RC020801 environmental engineeringScalePlotSediment concentrationSpatial ecologyErosionSoil erosionEnvironmental scienceSurface runoff
researchProduct

Applying the USLE Family of Models at the Sparacia (South Italy) Experimental Site

2016

Soil erosion is a key process to understand the land degradation, and modelling of soil erosion will help to understand the process and to foresee its impacts. The applicability of the Universal Soil Loss Equation (USLE) at event scale is affected by the fact that USLE rainfall erosivity factor does not take into account runoff explicitly. USLE-M and USLE-MM, including the effect of runoff in the event rainfall– runoff erosivity factor, are characterized by a better capacity to predict event soil loss. The specific objectives of this paper were (i) to determine the suitable parameterization of USLE, USLE-M and USLE-MM by using the dataseries of Sparacia experimental site and (ii) to evaluat…

010504 meteorology & atmospheric sciencesScale (ratio)Soil ScienceSoil scienceDevelopment01 natural sciencesDeposition (geology)Soil lossplot soil loUSLE-MMSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental Chemistry0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)Hydrologysoil erosionSediment04 agricultural and veterinary sciencesUniversal Soil Loss Equation040103 agronomy & agricultureLand degradationUSLE-M0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffEvent scaleLand Degradation & Development
researchProduct

An assessment of the global impact of 21st century land use change on soil erosion

2017

Human activity and related land use change are the primary cause of accelerated soil erosion, which has substantial implications for nutrient and carbon cycling, land productivity and in turn, worldwide socio-economic conditions. Here we present an unprecedentedly high resolution (250 × 250 m) global potential soil erosion model, using a combination of remote sensing, GIS modelling and census data. We challenge the previous annual soil erosion reference values as our estimate, of 35.9 Pg yr−1 of soil eroded in 2012, is at least two times lower. Moreover, we estimate the spatial and temporal effects of land use change between 2001 and 2012 and the potential offset of the global application o…

010504 meteorology & atmospheric sciencesScienceGeneral Physics and AstronomyHigh resolution010501 environmental sciences01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyAnthropogenic effect census conservation management environmental impact assessment GIS global perspective human activity land use change remote sensing soil conservation soil erosionSoutheast asiaCarbon cycleNutrientSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliLand use land-use change and forestrylcsh:Scienceskin and connective tissue diseases0105 earth and related environmental sciencesLand productivityMultidisciplinaryQGeneral ChemistryAgriculture and Soil ScienceReference valuesEnvironmental sciencelcsh:QPhysical geographysense organs
researchProduct

Predicting plot soil loss by empirical and process-oriented approaches. A review

2018

Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are considered as constituting a complementary suite of models to be chosen to meet the specific user need. In this paper, the Universal Soil Loss Equation and its revised versions are first reviewed. Selected methodologies developed to estimate the factors of the model with the aim to improve the soil loss estimate are described. Then the Water Erosion Prediction Project which represents a process-oriente…

010504 meteorology & atmospheric sciencesSoil erosion; Soil loss measurements; Universal soil loss equation; Water erosion prediction project; Bioengineering; Mechanical Engineering; Industrial and Manufacturing EngineeringBioengineeringSoil science01 natural sciencesIndustrial and Manufacturing EngineeringPlot (graphics)lcsh:Agriculturewater erosion prediction project.Soil loss measurementSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalilcsh:Agriculture (General)Temporal scalesReliability (statistics)0105 earth and related environmental sciencesgeographysoil loss measurementsgeography.geographical_feature_categoryPhysical modelMathematical modelMechanical EngineeringWater erosion prediction projectlcsh:S04 agricultural and veterinary sciencesUniversal Soil Loss Equationlcsh:S1-972RillUniversal Soil Loss EquationSoil erosion040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSpatial variability
researchProduct

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct