Search results for " sphere"
showing 10 items of 404 documents
On the Unit Ball of Operator-valued H 2-functions
2009
Let X be a complex Banach space and let H 2 (\( \mathbb{D} \), X) denote the space of X-valued analytic functions in the unit disc such that $$ \mathop {sup}\limits_{0 < r < 1} \int_0^{2\pi } {\left\| {F\left( {re^{it} } \right)} \right\|^2 \frac{{dt}} {{2\pi }} < \infty .} $$ It is shown that a function F belongs to the unit ball of H 2 ( \( \mathbb{D} \), X) if and only if there exist f∈H ∞ (\( \mathbb{D} \), X) and ϕ∈H ∞ (\( \mathbb{D} \)) such that $$ \left\| {f\left( z \right)} \right\|^2 + \left| {\varphi \left( z \right)} \right|^2 \leqslant 1 and F\left( z \right) = \frac{{f\left( z \right)}} {{1 - z\varphi \left( z \right)}} $$ for |z| < 1.
Thin Points of Brownian Motion Intersection Local Times
2005
Let \(\ell \) be the projected intersection local time of two independent Brownian paths in \(\mathbb{R}^d \) for d = 2, 3. We determine the lower tail of the random variable \(\ell \)(B(0, 1)), where B(0, 1) is the unit ball. The answer is given in terms of intersection exponents, which are explicitly known in the case of planar Brownian motion. We use this result to obtain the multifractal spectrum, or spectrum of thin points, for the intersection local times.
Spirals of Speaking Out? Effects of the “Suppressed Voice Rhetoric” on Audiences’ Willingness to Express Their Opinion
2020
A defining feature of counterpublics is to claim that their views are deliberately excluded from the mainstream public sphere. This rhetorical strategy – which we theorize as “suppressed voice rhet...
Investigation of Finite-Size Effects in the Determination of Interfacial Tensions
2014
The interfacial tension between coexisting phases of a material is an important parameter in the description of many phenomena such as crystallization, and even today its accurate measurement remains difficult. We have studied logarithmic finite-size corrections in the determination of the interfacial tension with large scale Monte Carlo simulations, and have identified several novel contributions which not only depend on the ensemble, but also on the type of the applied boundary conditions. We present results for the Lennard-Jones system and the Ising model, as well as for hard spheres, which are particularly challenging. In the future, these findings will contribute to the understanding a…
Quantum Monte Carlo study of high pressure solid molecular hydrogen
2013
We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We develop a new method to account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee-Zhang-Krakauer (KZK) functional in density functional theory. To study band-gap closure and find the metallization pressure, we perform accurate quasi-particle many-body calculations using the $GW$ method. In the static approximation, our DMC simulations indicate a transition from the insulating…
Mode coupling approach to the ideal glass transition of molecular liquids: Linear molecules
1997
The mode coupling theory (MCT) for the ideal liquid glass transition, which was worked out for simple liquids mainly by Gotze, Sjogren, and their co-workers, is extended to a molecular liquid of linear and rigid molecules. By use of the projection formalism of Zwanzig and Mori an equation of motion is derived for the correlators S[sub lm,l[sup (prime)]m[sup (prime)]]([bold q],t) of the tensorial one-particle density rho [sub lm]([bold q],t), which contains the orientational degrees of freedom for l(greater-than)0. Application of the mode coupling approximation to the memory kernel results into a closed set of equations for S[sub lm,l[sup (prime)]m[sup (prime)]]([bold q],t), which requires t…
Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings
1994
Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predic…
The ensemble switch method for computing interfacial tensions
2015
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.
Frustration of structural fluctuations upon equilibration of shear melts
2002
Abstract We report on the formation of amorphous solids from aquaeous suspensions of charged colloidal spheres. Comprehensive light scattering and microscopic studies show that in these systems the nucleation rate density continuously increases to very high values. At the highest particle densities of 47.5 μm −3 (packing fraction Φ =0.146) an amorphous state is observed of only short range order, finite static shear modulus and frozen long time dynamics. This state is composed of a piling of––as we propose pre-critical––nuclei. Differences from the Hard Sphere case are discussed in some detail. There the arrest of density fluctuations is observed and described by Mode Coupling scenarios. In…
Glass transition of hard spheres in high dimensions
2009
We have investigated analytically and numerically the liquid-glass transition of hard spheres for dimensions $d\to \infty $ in the framework of mode-coupling theory. The numerical results for the critical collective and self nonergodicity parameters $f_{c}(k;d) $ and $f_{c}^{(s)}(k;d) $ exhibit non-Gaussian $k$ -dependence even up to $d=800$. $f_{c}^{(s)}(k;d) $ and $f_{c}(k;d) $ differ for $k\sim d^{1/2}$, but become identical on a scale $k\sim d$, which is proven analytically. The critical packing fraction $\phi_{c}(d) \sim d^{2}2^{-d}$ is above the corresponding Kauzmann packing fraction $\phi_{K}(d)$ derived by a small cage expansion. Its quadratic pre-exponential factor is different fr…