Search results for " split"

showing 10 items of 264 documents

Influence of annealing atmosphere on photoelectrochemical response of TiO2 nanotubes anodized under controlled hydrodynamic conditions

2021

[EN] The influence of three annealing atmospheres (air, nitrogen and argon) and the use of controlled hydrodynamic conditions (from 0 to 5000 rpm) on morphological, structural, chemical and photoelectrochemical properties of TiO2 nanotubes have been evaluated. For this purpose, different characterization techniques have been used: Field Emission Scanning Electron Microscopy, Raman Confocal Laser Spectroscopy, X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, Incident Photon-to-electron Conversion Efficiency measurements, ultraviolet-visible absorption spectra, Mott-Schottky analysis and photoelectrochemical water splitting tests. According to the results, it can be concluded that both hy…

ArgonAbsorption spectroscopyAnnealing (metallurgy)General Chemical EngineeringPhysics::Opticschemistry.chemical_elementThermal treatmentHydrodynamic conditions photoelectrochemical water splittingINGENIERIA QUIMICAAnalytical ChemistryAnnealing atmosphereCondensed Matter::Materials Sciencesymbols.namesakechemistryX-ray photoelectron spectroscopyChemical engineeringTiO2 nanotubesPhysics::Atomic and Molecular ClustersElectrochemistrysymbolsWater splittingAnodizationSpectroscopyRaman spectroscopyJournal of Electroanalytical Chemistry
researchProduct

Current‐voltage curves of bipolar membranes

1992

Bipolar membranes consist of a layered ion‐exchange structure composed of a cation selective membrane joined to an anion selective membrane. They are analogous to semiconductor p‐n devices as both of them present current‐voltage curves exhibiting similar rectification properties. In this article, we present some current‐voltage curves obtained for different bipolar membranes at several temperatures. The results can be interpreted in terms of a simple model for ion transport and field‐enhanced water dissociation previously developed. The mechanism responsible for water splitting is assumed to be a catalytic proton transfer reaction between the charged groups and the water at the membrane int…

Arrhenius equationIv CharacteristicProton TransportTransfer ReactionsMembranesChemistryMembranes ; Iv Characteristic ; Temperature Effects ; Arrhenius Equation ; Water ; Dissociation ; Transfer Reactions ; Proton TransportUNESCO::FÍSICAGeneral Physics and AstronomyWaterChemical reactionDissociation (chemistry)Ionsymbols.namesakeTemperature EffectsMembraneChemical physics:FÍSICA [UNESCO]Proton transportsymbolsWater splittingTransport phenomenaArrhenius EquationDissociationNuclear chemistry
researchProduct

Operator splitting methods for American option pricing

2004

Abstract We propose operator splitting methods for solving the linear complementarity problems arising from the pricing of American options. The space discretization of the underlying Black-Scholes Scholes equation is done using a central finite-difference scheme. The time discretization as well as the operator splittings are based on the Crank-Nicolson method and the two-step backward differentiation formula. Numerical experiments show that the operator splitting methodology is much more efficient than the projected SOR, while the accuracy of both methods are similar.

Backward differentiation formulaMathematical optimizationPartial differential equationDiscretizationApplied MathematicsFinite difference methodSemi-elliptic operatorTime discretizationValuation of optionsComplementarity theoryLinear complementarity problemCrank–Nicolson methodOperator splitting methodAmerican optionMathematicsApplied Mathematics Letters
researchProduct

On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients

2020

Abstract Electrical energy storage can enhance the efficiency in the use of fluctuating renewable sources, e.g. solar and wind energy. The Acid/Base Flow Battery is an innovative and sustainable process to store electrical energy in the form of pH and salinity gradients via electrodialytic reversible techniques. Two electromembrane processes are involved: Bipolar Membrane Electrodialysis during the charge phase and its opposite, Bipolar Membrane Reverse Electrodialysis, during the discharge phase. For the first time, the present work aims at predicting the performance of this energy storage device via the development of a dynamic mathematical model based on a multi-scale approach with distr…

Battery (electricity)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)Wind powerbusiness.industry020209 energyMechanical EngineeringElectric potential energy02 engineering and technologyBuilding and ConstructionManagement Monitoring Policy and LawElectrodialysis7. Clean energy6. Clean waterEnergy storageRenewable energyGeneral Energy020401 chemical engineeringReversed electrodialysisElectrochemical energy storage Electrodialytic battery Ion-exchange membrane Ionic shortcut currents Process modelling Water splitting0202 electrical engineering electronic engineering information engineeringEnvironmental science0204 chemical engineeringProcess engineeringbusinessApplied Energy
researchProduct

Modeling and Performance Assessment of the Split-Pi Used as a Storage Converter in All the Possible DC Microgrid Scenarios. Part II: Simulation and E…

2021

Bidirectional DC/DC converters such as the Split-pi can be used to integrate an energy storage system (ESS) into a DC microgrid providing manifold benefits. However, this integration deserves careful design because the ESS converter must behave like a stiff voltage generator, a non-stiff voltage generator, or a current generator depending on the microgrid configuration. Part I of this work presented a comprehensive theoretical analysis of the Split-pi used as an ESS converter in all the possible DC microgrid scenarios. Five typical microgrid scenarios were identified. Each of them required a specific state-space model of the Split-pi and a suitable control scheme. The present paper complete…

Bidirectional converter Current control DC microgrid Droop control Electrical storage system Feed-forward control Split-piSplit-pidroop controlTechnologyControl and OptimizationComputer sciencefeed-forward controlEnergy Engineering and Power Technologycurrent controlEnergy storageSettore ING-INF/04 - AutomaticaElectronic engineeringCurrent generatorDC microgridelectrical storage systemElectrical and Electronic EngineeringEngineering (miscellaneous)Renewable Energy Sustainability and the Environmentbusiness.industryTFeed forwardSplit-pi; bidirectional converter; electrical storage system; DC microgrid; droop control; current control; feed-forward controlConvertersbidirectional converterVoltage generatorComputer data storageMicrogridbusinessEnergy (miscellaneous)Energies
researchProduct

Photocatalytic and photothermocatalytic applications of cerium oxide-based materials

2020

Abstract Cerium dioxide (CeO2) presents unique properties as the special electronic and optical properties of the 4f electrons, the capacity to form nonstoichiometric oxygen-deficient CeO2 − x oxides, the high oxygen mobility, and the reversible transformation between Ce4 + and Ce3 + that make it interesting for photocatalytic applications. CeO2 is a wide bandgap semiconductor (3.0–3.4 eV), but different approaches as combination with oxides, deposition of noble metals, doping with metal and nonmetal species, and the formation of surface defects have been adopted to extend its absorption towards the visible region with the aim to improve its photocatalytic performance. Cerium oxide-based ma…

CeriumCerium oxideMaterials scienceNonmetalChemical engineeringchemistryDopingPhotocatalysisWater splittingchemistry.chemical_elementCeO2 photocatalysis photothermocatalysisRedoxCatalysis
researchProduct

A rare example of nickel(ii) chains based on a heteroscorpionate-like ligand with quadruple imidazolyl interactions

2014

The first nickel(ii) complex with the heteroscorpionate-like bridging ligand DIMMAL (2-di1H-2-imidazolylmethylmalonate), [Ni(DIMMAL)(H2O)3]n·3nH2O (1), is a one-dimensional coordination polymer whose structure shows regular Ni(ii) chains with H-bonding inter-chain interactions and a rare example of a Quadruple Imidazolyl Embrace (QIE). The Ni(ii) chain shows a weak antiferromagnetic interaction that can be modelled with a regular S = 1 chain model including a zero field splitting with g = 2.270, J = -1.5 cm(-1) and D = -2.26 cm(-1).

Chain modelCoordination polymerLigandStereochemistrychemistry.chemical_elementBridging ligandZero field splittingInorganic Chemistrychemistry.chemical_compoundNickelCrystallographychemistryChain (algebraic topology)AntiferromagnetismDalton Trans.
researchProduct

Preparation and structural studies on dibutyltin(IV) complexes with pyridine mono- and dicarboxylic acids

2004

Abstract A number of organotin(IV) complexes with pyridine mono- and dicarboxylic acids (containing ligating –COOH group(s) and aromatic {N} atoms) were prepared in the solid state. The bonding sites of the ligands were determined by means of FT-IR spectroscopic measurements. It was found that in most cases the –COO− groups form bridges between two central {Sn} atoms, thereby leading to polymeric (oligomeric) complexes. On this basis, the experimental 119Sn Mossbauer spectroscopic data were treated with partial quadrupole splitting approximations. The calculations predicted the existence of complexes with octahedral (oh) and trigonal-bipyramidal (tbp) structures, but the formation of comple…

ChemistryCrystal structureOrganic ChemistryInorganic chemistrySolid-stateQuadrupole splittingCrystal structureBiochemistryOrganotin(IV) compoundFT-IRM€ossbauerInorganic ChemistryCrystallographychemistry.chemical_compoundOctahedronGroup (periodic table)Mössbauer spectroscopyPyridineMaterials ChemistryNMR studiesPhysical and Theoretical ChemistryFourier transform infrared spectroscopyJournal of Organometallic Chemistry
researchProduct

Mössbauer spectroscopic studies on compounds containing tin-cadmium and tin-zinc bonds

1975

The Mossbauer parameters of compounds Ph3Sn MCl · TMED (M = Cd, Zn; TMED = N,N,N′,N′-tetramethylethylenediamine), (Ph3Sn)2CdL2 (L2 = TMED, 2,2′-bipyridine and o-phenanthroline) and (Ph3Sn)2 Zn · TMED have been determined and are discussed in connection with Mossbauer data concerning Ph3SnIV derivatives with other Sn-metal bonds. The isomer shift values suggest a high s character in SnCd and SnZn bonds resulting in deviations from regular tetrahedral environments around tin. Experimental quadrupole splittings and calculated partial quadrupole splitting values indicate reduced donor abilities towards the tin atom of an individual Ph3SnIV moiety by Cd-and Zn(Ph3Sn)1−nClnL2 (i.e., the remaini…

ChemistryInorganic chemistrychemistry.chemical_elementQuadrupole splittingZincInorganic ChemistryMetalCrystallographyvisual_artMössbauer spectroscopyQuadrupoleMaterials Chemistryvisual_art.visual_art_mediumMoietyMoleculePhysical and Theoretical ChemistryTinInorganica Chimica Acta
researchProduct

Purely Spectroscopic Determination of the Spin Hamiltonian Parameters in High-Spin Six-Coordinated Cobalt(II) Complexes with Large Zero-Field Splitti…

2019

Accurate determination of the spin Hamiltonian parameters in transition-metal complexes with large zero-field splitting (ZFS) is an actual challenge in studying magnetic and spectroscopic properties of high-spin transition metal complexes. Recent critical papers have convincingly shown that previous determinations of these parameters, based only on the magnetic data, have low accuracy and reliability. A combination of X-band electron paramagnetic resonance (EPR) spectroscopy and SQUID magnetometry seems to be a more convincing and accurate approach. However, even in this case, the accuracy of the determination of the spin Hamiltonian parameters is strongly limited. In this work, we propose …

ChemistryMagnetometerZero field splittingMolecular physicsSpectral linelaw.inventionInorganic ChemistrySQUIDTransition metallawPhysical and Theoretical ChemistryElectron paramagnetic resonanceSpectroscopySpin-½Inorganic chemistry
researchProduct