Search results for " strutture"
showing 10 items of 232 documents
A regular variational boundary model for free vibrations of magneto-electro-elastic structures
2011
In this paper a regular variational boundary element formulation for dynamic analysis of two-dimensional magneto-electro-elastic domains is presented. The method is based on a hybrid variational principle expressed in terms of generalized magneto-electro-elastic variables. The domain variables are approximated by using a superposition of weighted regular fundamental solutions of the static magneto-electro-elastic problem, whereas the boundary variables are expressed in terms of nodal values. The variational principle coupled with the proposed discretization scheme leads to the calculation of frequency-independent and symmetric generalized stiffness and mass matrices. The generalized stiffne…
High-fidelity analysis of multilayered shells with cut-outs via the discontinuous Galerkin method
2021
Abstract A novel numerical method for the analysis of multilayered shells with cut-outs is presented. In the proposed approach, the shell geometry is represented via either analytical functions or NURBS parametrizations , while generally-shaped cut-outs are defined implicitly within the shell modelling domain via a level set function . The multilayered shell problem is addressed via the Equivalent-Single-Layer approach whereby high-order polynomial functions are employed to approximate the covariant components of the displacement field throughout the shell thickness. The shell governing equations are then derived from the Principle of Virtual Displacements of three-dimensional elasticity an…
Layer-wise and equivalent single layer models for smart multilayered plates
2014
Layer-wise and equivalent single layer plate models for magneto-electro-elastic multiphysics laminates are presented in a unified framework. They are based on variable kinematics and quasi-static behavior of the electromagnetic fields. The electromagnetic state of each single layer is preliminary determined by solving the corresponding governing equations coupled with the proper interface continuity and external boundary conditions. By so doing, the electromagnetic state is condensed into the plate kinematics and the layer governing equations are inferred by the principle of virtual displacements. This approach identifies effective mechanical layers, which are kinematically equivalent to th…
An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves
2015
We propose a structural health monitoring (SHM) paradigm based on the simultaneous use of ultrasounds and electromechanical impedance (EMI) to monitor waveguides. Methods based on the propagation of guided ultrasonic waves (GUWs) are increasingly used in all those SHM applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. Meantime, impedance-based SHM promises to adequately assess locally the structural integrity of simple waveguides and complex structures such as bolted connections. As both methods utilize piezoelectric transducers bonded or embedded to the structure of interest, this paper describes a unified SHM para…
A thermodynamically consistent CZM for low-cycle fatigue analysis
2018
A cohesive zone model for low-cycle fatigue analysis is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variable. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the damage activation condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behavior without any fatigue degradation for low levels loading conditions.
Advanced models for smart multilayered plates based on Reissner Mixed Variational Theorem
2017
In the present work, families of equivalent singe layer and layer-wise models for the static and free vibrations analysis of magneto-electro-elastic multilayered plates are developed. The models are defined in the framework of a unified formulation, which offers a systematic approach for generating refined plate theories through suitable expansions of the through-the-thickness components of the relevant fields, considering the expansion order as a free parameter. The key features of the developed formulation are: a) the condensation of the electric and magnetic description into the mechanical representation, based on the quasi-static electric-magnetic approximation, which allows to reduce t…
Numerical Analysis of Piezoelectric Active Repair in the Presence of Frictional Contact Conditions
2013
The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures …
Slotted Blades Savonius Wind Turbine Analysis by CFD
2013
In this paper a new bucket configuration for a Savonius wind generator is proposed. Numerical analyses are performed to estimate the performances of the proposed configuration by means of the commercial code COMSOL Multiphysics® with respect to Savonius wind turbine with overlap only. Parametric analyses are performed, for a fixed overlap ratio, by varying the slot position; the results show that for slot positioned near the blade root, the Savonius rotor improves performances at low tip speed ratio, evidencing a better starting torque. This circumstance is confirmed by static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savoni…
Unified formulation for a family of advanced finite elements for smart multilayered plates
2016
AbstractFamilies of layer-wise and equivalent single-layer advanced finite elements for the analysis of smart multilayered plates are formulated in a unified framework. The proposed modeling strategy reduces the multifield problem to an effective mechanical plate by the condensation of the electromechanical state into the plate kinematics, which is assumed as a variable order expansion along the plate thickness. Carrera Unified Formulation is invoked to derive the elemental stiffness and mass matrices and the mechanical and magneto-electric equivalent forces. The obtained smart plate finite element equations involves kinematical variables only and this extends the tools developed for multil…
A boundary element model for structural health monitoring using piezoelectric transducers
2013
In this paper, for the first time, the boundary element method (BEM) is used for modelling smart structures instrumented with piezoelectric actuators and sensors. The host structure and its cracks are formulated with the 3D dual boundary element method (DBEM), and the modelling of the piezoelectric transducers implements a 3D semi-analytical finite element approach. The elastodynamic analysis of the structure is performed in the Laplace domain and the time history is obtained by inverse Laplace transform. The sensor signals obtained from BEM simulations show excellent agreement with those from finite element modelling simulations and experiments. This work provides an alternative methodolog…