Search results for " synchronous motor"
showing 10 items of 23 documents
Sensorless control of PMSM by a linear neural network: TLS EXIN neuron
2010
Sensorless vector control applied to the Permanent Magnet Synchronous Motors (PMSMs) is a very challenging subject. It permits obtaining high dinamical performance by exploiting increased reliability and also reduced cost. Among the different methodologies proposed in literature, a model based approach has been proposed here. In particular, the space vector equations of the PMSM have been re-elaborated to permit the use of a Least Squares technique. The problem has been then faced-up to with the so-called TLS EXIN neuron, which is a linear neural network able to solve the TLS problem on-line. Simulation tests have been done on both interior mounted and surface mounted machines.
Experimental test on a fuel cell powered brushless synchronous motor for automotive applications
2014
In this paper, a fuel cell powered motor emulator is proposed. The MATLAB/Simulink model including the fuel cell stack, the motor and drive models is described. The Urban Driving Cycle test is performed in MATLAB environment. Effective operating conditions of the whole fuel cell powered motor are accurately emulated according to actual regulations in force. The emulated current profile is used for experimental tests on a 5kW Nuvera PowerFlow stack. Thanks to the proposed approach, the motor and inverter drives are accurately emulated and the provided test-bench is used to evaluate performances of the stack under test for automotive applications. Simulation and experimental results are compa…
Field Reconstruction for Modeling Multiple Faults in Permanent Magnet Synchronous Motors in Transient States
2021
Conventional field reconstruction model (FRM) for electrical machines has proved its main strength in efficient computations of magnetic fields and forces in healthy permanent magnet synchronous machines (PMSM) or faulty machines in steady states. This study aims to develop a magnet library of different magnet defects and include inter-turn short-circuit (ITSC) in the FRM for PMSM. The developed FRM can model a combination fault between ITSC, and magnet defect in a PMSM in transient states. Within the framework, an 8-turn ITSC was modelled in both finite element analysis (FEA) and FRM, and then identified by the extended Park’s vector approach. The air-gap magnetic field reproduced b…
Detection and Discrimination of Inter-Turn Short Circuit and Demagnetization Faults in PMSMs Based on Structural Analysis
2021
This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, th…
Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches
2005
In this paper, a new loss minimization control algorithm for inverter-fed permanent-magnet synchronous motors (PMSMs), which allows for the reduction of the power losses of the electric drive without penalty on its dynamic performance, is analyzed, experimentally realized, and validated. In particular, after a brief recounting of two loss minimization control strategies, namely, the "search control" and the "loss-model control," both a new modified dynamic model of the PMSM (which takes into account the iron losses) and an innovative "loss-model" control strategy are presented. Experimental tests on a specific PMSM drive employing the proposed loss minimization algorithm have been performed…
Efficiency Improvement of Inverter-Fed Permanent Magnet Synchronous Motors
2003
In this paper a control algorithm for the efficiency improvement of inverter-fed permanent magnet synchronous motors (PMSMs) is presented. The proposed algorithm allows reducing the losses of the drive without reduction of its dynamic performances. In details, after recalling a dynamic model of the PMSM, which has been purposely modified and that takes into account the iron losses, the basic equations and the constraints to obtain the loss minimization are presented and discussed. Some simulations of a specific PMSM drive employing the proposed algorithm are performed. The results of these simulations show that the dynamic performances are maintained, and enhancement of the efficiency up to…
Characterization of interior permanent magnet synchronous motors for loss model algorithm identification
2016
The paper provides the results of a detailed experimental study on the variations of the characteristics of an interior permanent magnet synchronous motor, when load, speed and/or magnetization conditions vary. In particular, the characterization is carried out by assessing, for several working conditions, the motor parameters that influence its efficiency. From the knowledge of the variability of these parameters, it is possible to develop a dynamic model of the motor, which accurately describes its behaviour and allows estimating the power losses for whatever speed and load. In order to validate the model, the values of the power losses obtained by using the model are compared with the va…
Comparison of three control drive systems for interior permanent magnet synchronous motors
2017
In a previous paper, we proposed a control strategy for interior permanent synchronous motors, which takes into account also the reduction of the motor power losses. The novelty of the suggested approach is that it takes into consideration the variations of all the motor parameters that have an influence on its efficiency. In order to verifyon the field the effectiveness of this new method, we implemented the proposed loss model algorithm in a control drive system and compared its performances, in terms of energy losses with respect to other conventional techniques.
Characterization of the parameters of interior permanent magnet synchronous motors for a loss model algorithm
2017
Abstract The paper provides the results of a detailed experimental study on the variations of the characteristics of an interior permanent magnet synchronous motor, when load, speed and/or magnetization conditions vary. In particular, the characterization is carried out by assessing, for several working conditions, the motor parameters that influence its efficiency. From the knowledge of the variability of these parameters, it is possible to develop a dynamic model of the motor, which accurately describes its behaviour and allows estimating the power losses for whatever speed and load. In order to validate the model, the values of the power losses obtained by using the model are compared wi…
Mixed Fault Classification of Sensorless PMSM Drive in Dynamic Operations Based on External Stray Flux Sensors
2022
This paper aims to classify local demagnetisation and inter-turn short-circuit (ITSC) on position sensorless permanent magnet synchronous motors (PMSM) in transient states based on external stray flux and learning classifier. Within the framework, four supervised machine learning tools were tested: ensemble decision tree (EDT), k-nearest neighbours (KNN), support vector machine (SVM), and feedforward neural network (FNN). All algorithms are trained on datasets from one operational profile but tested on other different operation profiles. Their input features or spectrograms are computed from resampled time-series data based on the estimated position of the rotor from one stray flux sensor t…