Search results for " thermodynamic"

showing 7 items of 317 documents

Merging Features from Green's Functions and Time Dependent Density Functional Theory: A Route to the Description of Correlated Materials out of Equil…

2016

We propose a description of nonequilibrium systems via a simple protocol that combines exchange-correlation potentials from density functional theory with self-energies of many-body perturbation theory. The approach, aimed to avoid double counting of interactions, is tested against exact results in Hubbard-type systems, with respect to interaction strength, perturbation speed and inhomogeneity, and system dimensionality and size. In many regimes, we find significant improvement over adiabatic time dependent density functional theory or second Born nonequilibrium Green's function approximations. We briefly discuss the reasons for the residual discrepancies, and directions for future work.

out of equilibriumexchange-correlation potentialmany body perturbation theoryGeneral Physics and AstronomyPerturbation (astronomy)Non-equilibrium thermodynamicsFOS: Physical sciences02 engineering and technologyResidual01 natural sciencesnon-equilibrium Green's functionCondensed Matter - Strongly Correlated Electronstime dependent density functional theory0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Statistical physicsnonequilibrium system010306 general physicsAdiabatic processcorrelated materialsPhysicsCondensed Matter - Materials Scienceta114Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)Time-dependent density functional theory021001 nanoscience & nanotechnologyinteraction strengthperturbation techniquesFunction approximationDensity functional theory0210 nano-technologyCurse of dimensionality
researchProduct

Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes

2019

Proton diffusion (PD) across biological membranes is a fundamental process in many biological systems, and much experimental and theoretical effort has been employed for deciphering it. Here, we report on a spectroscopic probe, which can be tightly tethered to the membrane, for following fast (nanosecond) proton transfer events on the surface of membranes. Our probe is composed of a photoacid that serves as our light-induced proton source for the initiation of the PD process. We use our probe to follow PD, and its pH dependence, on the surface of lipid vesicles composed of a zwitterionic headgroup, a negative headgroup, a headgroup that is composed only from the negative phosphate group, or…

protonitkalvot (orgaaniset objektit)ProtonDiffusionNon-equilibrium thermodynamics02 engineering and technologylipidit010402 general chemistryKinetic energy01 natural sciencesdiffuusioMolecular dynamicsdiffuusio (fysikaaliset ilmiöt)proton diffusionmolekyylidynamiikkata116MultidisciplinaryChemistryBiological membraneNanosecondphotoacid021001 nanoscience & nanotechnologymolecular dynamics0104 chemical scienceslipid vesiclesMembraneexcited-state proton transferPNAS PlusChemical physicslipids (amino acids peptides and proteins)0210 nano-technologyProceedings of the National Academy of Sciences
researchProduct

Understanding Structure and Stability of Monoclinic Zirconia Surfaces from First-Principles Calculations

2017

Under the water-rich pre-treatment and/or reaction conditions, structure and chemistry of the monoclinic zirconia surfaces are strongly influenced by oxygen vacancies and incorporated water. Here, we report a combined first-principles and atomistic thermodynamics study on the structure and stability of selected surfaces of the monoclinic zirconia. Our results indicate that among the studied surfaces, the most stable (111) surface is the least vulnerable towards oxygen vacancies in contrast to the less stable (011) and (101) surfaces, where formation of oxygen vacancies is energetically more favorable. Furthermore, we present a vigorous, systematic screening of water incorporation onto the s…

reformingheterogeneous catalysiswater–gas shiftatomistic thermodynamicstiheysfunktionaaliteorialaskelmatphasediagrammitoxide support
researchProduct

A Theoretical and Experimental Investigation of the Spectroscopic Properties of a DNA-Intercalator Salphen-Type ZnIIComplex

2014

The photophysical and DNA-binding properties of the cationic zinc(II) complex of 5-triethylammonium methyl salicylidene ortho-phenylenediiminato (ZnL 2 + ) were investi- gated by a combination of experimental and theoretical methods. DFT calculations were performed on both the ground and the first excited states of ZnL 2 + and on its possi- ble mono- and dioxidation products, both in vacuo and in selected solvents mimicked by the polarizable continuum model. Comparison of the calculated absorption and fluores- cence transitions with the corresponding experimental data led to the conclusion that visible light induces a two-elec- tron photooxidation process located on the phenylenediimi- nato…

spectroscopyNO ligandStereochemistryIntercalation (chemistry)Ionic bondingmetal complex Fluorescence spectroscopy DNA recognition metal complexes organometallics complex formation DNA binding drugs fluorescence spectroscopy equilibrium constants reaction mechanisms nucleic acids affinity binding mode thermodynamics speciationmetal complexesbinding modePhenylenediaminesPolarizable continuum modelCatalysisdrugsmetal complexthermodynamicsintercalationcomplex formationOrganometallic CompoundsA-DNADNA bindingFluorescence spectroscopyDNA recognitionphotochemistryLigandChemistrySpectrum AnalysisphotooxidationOrganic ChemistryCationic polymerizationequilibrium constantsGeneral Chemistrydensity functional calculationFluorescenceZincCrystallographyreaction mechanismsnucleic acidsspeciationSettore CHIM/03 - Chimica Generale E InorganicaExcited stateaffinityfluorescenceorganometallics
researchProduct

New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows

2021

We present new invariant domain preserving finite volume schemes for the compressible Euler and Navier–Stokes–Fourier systems. The schemes are entropy stable and preserve positivity of density and internal energy. More importantly, their convergence towards a strong solution of the limit system has been proved rigorously in [9, 11]. We will demonstrate their accuracy and robustness on a series of numerical experiments.

symbols.namesakeEntropy (classical thermodynamics)Finite volume methodSeries (mathematics)Convergence (routing)Euler's formulasymbolsApplied mathematicsLimit (mathematics)Invariant (mathematics)Domain (mathematical analysis)Mathematics
researchProduct

Thermodynamics: Classical Framework

2016

This chapter starts with a summary of the thermodynamic potentials and the relationships between them which are obtained from Legendre transformation. This is followed by an excursion to some important global properties of materials such as specific heat, expansion coefficients and others. The thermodynamic relations provide the basis for a discussion of continuous changes of state which are illustrated by the Joule-Thomson effect and the Van der Waals gas. These are models which are more realistic than the ideal gas. The discussion of Carnot cycles leads to and illustrates the second and third laws of thermodynamics. The chapter closes with a discussion of entropy as a concave function of …

symbols.namesakeEntropy (classical thermodynamics)Fundamental thermodynamic relationOn the Equilibrium of Heterogeneous SubstancessymbolsNon-equilibrium thermodynamicsStatistical physicsCarnot cycleThermodynamic systemLaws of thermodynamicsThermodynamic potentialMathematics
researchProduct

The two-fluid extended model of superfluid helium

2019

In this paper we perform the first numerical comparison between the two main existing models of superfluid helium: the two-fluid model proposed by Landau and the one-fluid extended model proposed from the extended thermodynamics. The numerical experiments in this paper regard the profiles of the so-called normal and superfluid components in 2D counterflow turbulence.

two-fluid modelcounterflow turbulencesuperfluid heliumextended thermodynamicSettore MAT/07 - Fisica Matematicaone-fluid extended model
researchProduct