Search results for " transition temperature"
showing 4 items of 14 documents
Superconductivity of Glassy Metals
2005
Anisotropic transport properties ofUNi2Al3thin films
2007
Experimental results on the transport anisotropy in thin films of the heavy fermion superconductor $\mathrm{U}{\mathrm{Ni}}_{2}{\mathrm{Al}}_{3}$ are presented. They show that the eletronic transport in $\mathrm{U}{\mathrm{Ni}}_{2}{\mathrm{Al}}_{3}$ for different directions is strongly dominated by different sheets of the Fermi surface, and that the magnetic moments must be assigned to a cylindrical part around the $c$ axis. Founded on the findings about the Fermi surface, the dependence of the resistive superconducting transition temperature ${T}_{c}$ on the current direction in $\mathrm{U}{\mathrm{Ni}}_{2}{\mathrm{Al}}_{3}$ can be explained as the result of weakly coupled superconducting …
Confined and extended optical phonons in an ultrathin-layerYBa2Cu3O7/PrBa2Cu3O7superlattice
1995
Raman-scattering studies of a high-quality ultrathin-layer (${\mathrm{YBa}}_{2}$${\mathrm{Cu}}_{3}$${\mathrm{O}}_{7}$${)}_{4}$/(${\mathrm{PrBa}}_{2}$${\mathrm{Cu}}_{3}$${\mathrm{O}}_{7}$${)}_{1}$ superconducting superlattice resolve, in addition to the combined ${\mathit{B}}_{1\mathit{u}}$ mode at 310 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ previously reported for a 2:1 sample, a peak at 350 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ at low temperature. This peak and also others have been interpreted by a lattice-dynamical calculation for the superlattice. The results are compared with confined or extended phonon pictures. The superlattice mode is not renormalized below the superconducti…
Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP
2022
This research was funded by M-Era.Net project MERF “Matrix for carbon reinforced epoxy laminates with reduced flammability” grant No. 1.1.1.5/ERANET/20/04 from the Latvian State Education Development Agency and M-Era.Net project “EPIC—European Partnership for Improved Composites“ funded by grant No. TH06020001. A.S., K.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.