Search results for " truth."

showing 10 items of 106 documents

Conjugate Gradient Method for Brain Magnetic Resonance Images Segmentation

2018

Part 8: Pattern Recognition and Image Processing; International audience; Image segmentation is the process of partitioning the image into regions of interest in order to provide a meaningful representation of information. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the nonlinear Conjugat…

Ground truthComputer sciencebusiness.industryThe Conjugate Gradient algorithmComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONBrain image segmentationPattern recognition02 engineering and technologyImage segmentationImage (mathematics)Nonlinear conjugate gradient method03 medical and health sciences0302 clinical medicineDice Coefficient metricHidden Markov Random FieldConjugate gradient methodComputer Science::Computer Vision and Pattern Recognition0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentation[INFO]Computer Science [cs]Artificial intelligencebusinessHidden Markov random field030217 neurology & neurosurgery
researchProduct

Online mass flow prediction in CFB boilers with explicit detection of sudden concept drift

2010

Fuel feeding and inhomogeneity of fuel typically cause fluctuations in the circulating fluidized bed (CFB) process. If control systems fail to compensate the fluctuations, the whole plant will suffer from dynamics that is reinforced by the closed-loop controls. This phenomenon causes reducing efficiency and the lifetime of process components. In this paper we address the problem of online mass flow prediction, which is a part of control. Particularly, we consider the problem of learning an accurate predictor with explicit detection of abrupt concept drift and noise handling mechanisms. We emphasize the importance of having domain knowledge concerning the considered case and constructing the…

Ground truthConcept driftComputer scienceMass flowGeography Planning and DevelopmentBoiler (power generation)Control theoryControl systemGeneral Earth and Planetary SciencesDomain knowledgeFluidized bed combustionChange detectionSimulationWater Science and Technology
researchProduct

New Error Measures to Evaluate Features on Three-Dimensional Scenes

2011

In this paper new error measures to evaluate image features in three-dimensional scenes are proposed and reviewed. The proposed error measures are designed to take into account feature shapes, and ground truth data can be easily estimated. As other approaches, they are not error-free and a quantitative evaluation is given according to the number of wrong matches and mismatches in order to assess their validity

Ground truthFeature Detector Feature Descriptor Overlap Error Epipolar Geometry Feature Matching and ComparisonSettore INF/01 - InformaticaFeature (computer vision)business.industryEpipolar geometryFeature descriptorPattern recognitionArtificial intelligencebusinessFeature matchingMathematics
researchProduct

Uncertainties in The S-Sebi Model to Estimate Surface Energy Fluxes Over Natural Grasslands in Brazil

2021

Evapotranspiration (ET) is one of the main fluxes in the global water cycle. In this context, we assessed an operational methodology based on the S-SEBI model to accurately estimate energy fluxes over the natural grasslands of Pampa biome. The S-SEBI performance was investigated considering radiation data from both ERA5 reanalysis and tower flux. Comparisons from satellite-based estimates with in situ measurements were performed with and without energy balance closure (EBC). Results indicated that meteorological inputs have low sensitivity on daily ET estimates. In contrast, the instantaneous components are more affected. The impact in the daily ET is lower when in situ data without EBC are…

Ground truthFlux (metallurgy)EvapotranspirationBiomeEnergy balanceEnvironmental scienceContext (language use)SatelliteScale (map)Atmospheric sciences
researchProduct

Identifying Unreliable Sensors Without a Knowledge of the Ground Truth in Deceptive Environments

2017

This paper deals with the extremely fascinating area of “fusing” the outputs of sensors without any knowledge of the ground truth. In an earlier paper, the present authors had recently pioneered a solution, by mapping it onto the fascinating paradox of trying to identify stochastic liars without any additional information about the truth. Even though that work was significant, it was constrained by the model in which we are living in a world where “the truth prevails over lying”. Couched in the terminology of Learning Automata (LA), this corresponds to the Environment (Since the Environment is treated as an entity in its own right, we choose to capitalize it, rather than refer to it as an “…

Ground truthLearning automataComputer sciencebusiness.industry02 engineering and technologySensor fusionAbstract conceptTerminology020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessLying
researchProduct

Automatic Segmentation of Pulmonary Lobes in Pulmonary CT Images using Atlas-based Unsupervised Learning Network

2020

Pulmonary lobes segmentation of pulmonary CT images is important for assistant therapy and diagnosis of pulmonary disease in many clinical tasks. Recently supervised deep learning methods are applied widely in fast automatic medical image segmentation including pulmonary lobes segmentation of pulmonary CT images. However, they require plenty of ground truth due to their supervised learning scheme, which are always difficult to realize in practice. To address this issue, in this study we extend an existed unsupervised learning network with an extra pulmonary mask constraint to develop a deformable pulmonary lobes atlas and apply it for fast automatic segmentation of pulmonary lobes in pulmon…

Ground truthLungAtlas (topology)business.industryComputer scienceDeep learningSupervised learningPattern recognitionImage segmentationmedicine.anatomical_structuremedicineUnsupervised learningSegmentationArtificial intelligencebusiness2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
researchProduct

Outdoor Scenes Pixel-wise Semantic Segmentation using Polarimetry and Fully Convolutional Network

2019

International audience; In this paper, we propose a novel method for pixel-wise scene segmentation application using polarimetry. To address the difficulty of detecting highly reflective areas such as water and windows, we use the angle and degree of polarization of these areas, obtained by processing images from a polarimetric camera. A deep learning framework, based on encoder-decoder architecture, is used for the segmentation of regions of interest. Different methods of augmentation have been developed to obtain a sufficient amount of data, while preserving the physical properties of the polarimetric images. Moreover, we introduce a new dataset comprising both RGB and polarimetric images…

Ground truthModality (human–computer interaction)reflective areasPixelbusiness.industryComputer scienceDeep learningsegmentationPolarimetryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONdeep learning[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineering02 engineering and technologyMarket segmentationaugmentation0202 electrical engineering electronic engineering information engineeringRGB color model020201 artificial intelligence & image processingComputer visionSegmentationArtificial intelligencebusinesspolarimetryProceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
researchProduct

Robust Principal Component Analysis of Data with Missing Values

2015

Principal component analysis is one of the most popular machine learning and data mining techniques. Having its origins in statistics, principal component analysis is used in numerous applications. However, there seems to be not much systematic testing and assessment of principal component analysis for cases with erroneous and incomplete data. The purpose of this article is to propose multiple robust approaches for carrying out principal component analysis and, especially, to estimate the relative importances of the principal components to explain the data variability. Computational experiments are first focused on carefully designed simulated tests where the ground truth is known and can b…

Ground truthPCAComputer scienceRobust statisticsMissing datacomputer.software_genreSet (abstract data type)missing dataMultiple correspondence analysisrobust statisticsPrincipal component analysisData miningcomputerRobust principal component analysis
researchProduct

Automatic Seed Placement for Breast Lesion Segmentation on US Images

2012

Breast lesion boundaries have been mostly extracted by using conventional approaches as a previous step in the development of computer-aided diagnosis systems. Among these, region growing is a frequently used segmentation method. To make the segmentation completely automatic, most of the region growing methods incorporate automatic selection of the seed points. This paper proposes a new automatic seed placement algorithm for breast lesion segmentation on ultrasound images by means of assigning the probability of belonging to a lesion for every pixel depending on intensity, texture and geometrical constraints. The proposal has been evaluated using a set of sonographic breast images with acco…

Ground truthPixelbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationmedicine.diseaseSet (abstract data type)LesionBreast cancerRegion growingmedicineComputer visionSegmentationArtificial intelligencemedicine.symptombusiness
researchProduct

Weighted Likelihood Function of Multiple Statistical Parameters to Retrieve 2D TRUS-MR Slice Correspondece for Prostate Biopsy

2012

International audience; This paper presents a novel method to identify the 2D axial Magnetic Resonance (MR) slice from a pre-acquired MR prostate volume that closely corresponds to the 2D axial Transrectal Ultrasound (TRUS) slice obtained during prostate biopsy. The shape-context representations of the segmented prostate contours in both the imaging modalities are used to establish point correspondences using Bhattacharyya distance. Thereafter, Chi-square distance is used to find the prostate shape similarities between the MR slices and the TRUS slice. Normalized mutual information and correlation coefficient between the TRUS and MR slices are computed to find the information theoretic simi…

Ground truthProstate biopsySimilarity (geometry)Correlation coefficientmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryStatistical parameter[INFO.INFO-IM] Computer Science [cs]/Medical ImagingMagnetic resonance imagingPattern recognition02 engineering and technologyImage segmentationurologic and male genital diseases030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingBhattacharyya distance020201 artificial intelligence & image processingArtificial intelligencebusinessMathematics
researchProduct