Search results for " type I"
showing 10 items of 826 documents
New 1,4-Dihydropyridines Down-regulate Nitric Oxide in Animals with Streptozotocin-induced Diabetes Mellitus and Protect Deoxyribonucleic Acid agains…
2015
Diabetes mellitus (DM) and its complications cause numerous health and social problems throughout the world. Pathogenic actions of nitric oxide (NO) are responsible to a large extent for development of complications of DM. Search for compounds regulating NO production in patients with DM is thus important for the development of pharmacological drugs. Dihydropyridines (1,4-DHPs) are prospective compounds from this point of view. The goals of this study were to study the in vivo effects of new DHPs on NO and reactive nitrogen and oxygen species production in a streptozotocin (STZ)-induced model of DM in rats and to study their ability to protect DNA against nocive action of peroxynitrite. STZ…
Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element
2020
OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS Afte…
The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis
2019
Inducible nitric oxide synthase (iNOS) plays a critical role in the regulation of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that iNOS plays pathogenic as well as regulatory roles in MS and EAE. However, how does iNOS alters the pathophysiology of the central nervous system (CNS) in neuronal autoimmunity is not clearly understood. In the present work, we show that treatment of mice with L-NAME, an iNOS inhibitor, during the antigen-priming phase primarily alters brain pathology, while in the subsequent effector phase of the immune response, the spinal cord is involved. Inhibition of iNOS during the priming phase of the immune res…
Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN)
2017
Background and aims: Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network). Methods: Observational, multicenter, retrospective and prospective study involving about 40 Italian clinical centers. Genetic testing of the appropriate candidate genes at one of six molecular diagnostic laboratories serving as nationw…
New insights into the mechanism of action of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives endowed with anticancer potential
2018
Due to the scarce biological profile, the pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one scaffold (PBT) has been recently explored as promising core for potential anticancer candidates. Several suitably decorated derivatives (PBTs) exhibited antiproliferative activity in the low-micromolar range associated with apoptosis induction and cell cycle arrest on S phase. Herein, we selected the most active derivatives and submitted them to further biological explorations to deepen the mechanism of action. At first, a DNA targeting is approached by means of flow Linear Dichroism experiments so as to evaluate how small planar molecules might interact with DNA, including the interference with the catal…
Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in met…
2020
Abstract 2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected…
Microparticles harbouring Sonic hedgehog morphogen improve the vasculogenesis capacity of endothelial progenitor cells derived from myocardial infarc…
2019
Aims Endothelial progenitor cells (EPC) play a role in endothelium integrity maintenance and regeneration. Decreased numbers of EPC or their impaired function correlates with an increase in cardiovascular events. Thus, EPC are important predictors of cardiovascular mortality and morbidity. Microparticles carrying Sonic hedgehog (Shh) morphogen (MPShh+) trigger pro-angiogenic responses, both in endothelial cells and in ischaemic rodent models. Here, we propose that MPShh+ regulates EPC function, thus enhancing vasculogenesis, and correcting the defects in dysfunctional EPC obtained from acute myocardial infarction (AMI) patients. Methods and results The mechanisms underlying Shh pathway func…
Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, a…
2019
Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents w…
Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation.
2017
Organ fibrosis is characterized by a chronic wound-healing response, with excess deposition of extracellular matrix components. Here, collagen type I represents the most abundant scar component and a primary target for antifibrotic therapies. Liver fibrosis can progress to cirrhosis and primary liver cancer, which are the major causes of liver related morbidity and mortality. However, a (pro-)collagen type I specific therapy remains difficult and its therapeutic abrogation may incur unwanted side effects. We therefore designed tetracycline-regulated procollagen alpha1(I) short hairpin (sh)RNA expressing mice that permit a highly efficient inducible knockdown of the procollagen alpha1(I) gen…
A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.
2017
Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…