Search results for " type I"

showing 10 items of 826 documents

New 1,4-Dihydropyridines Down-regulate Nitric Oxide in Animals with Streptozotocin-induced Diabetes Mellitus and Protect Deoxyribonucleic Acid agains…

2015

Diabetes mellitus (DM) and its complications cause numerous health and social problems throughout the world. Pathogenic actions of nitric oxide (NO) are responsible to a large extent for development of complications of DM. Search for compounds regulating NO production in patients with DM is thus important for the development of pharmacological drugs. Dihydropyridines (1,4-DHPs) are prospective compounds from this point of view. The goals of this study were to study the in vivo effects of new DHPs on NO and reactive nitrogen and oxygen species production in a streptozotocin (STZ)-induced model of DM in rats and to study their ability to protect DNA against nocive action of peroxynitrite. STZ…

0301 basic medicineBlood GlucoseMaleDihydropyridinesNitric Oxide Synthase Type IIIXanthine DehydrogenaseDown-RegulationNitric Oxide Synthase Type IIDHPS030204 cardiovascular system & hematologyPharmacologyToxicologyEndothelial NOSKidneyNitric OxideProtective AgentsNitric oxideDiabetes Mellitus Experimental03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePeroxynitrous AcidmedicineAnimalsRats WistarReactive nitrogen speciesPharmacologybiologyGeneral MedicineDNAStreptozotocinReactive Nitrogen SpeciesRatsNitric oxide synthasePeroxynitrous acid030104 developmental biologyBiochemistrychemistryLiverbiology.proteinReactive Oxygen SpeciesPeroxynitritemedicine.drugBasicclinical pharmacologytoxicology
researchProduct

Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element

2020

OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS Afte…

0301 basic medicineBrain DiseasesDNA Copy Number VariationsSodium-Phosphate Cotransporter Proteins Type IIIHEK 293 cellsBrainHaploinsufficiencyBiologyMolecular biologyReverse transcriptase03 medical and health sciencesHEK293 Cells030104 developmental biology0302 clinical medicineNeurologyMutationHumansNeurology (clinical)Copy-number variationAlleleHaploinsufficiencyEnhancerGene030217 neurology & neurosurgeryExome sequencingMovement Disorders
researchProduct

The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis

2019

Inducible nitric oxide synthase (iNOS) plays a critical role in the regulation of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that iNOS plays pathogenic as well as regulatory roles in MS and EAE. However, how does iNOS alters the pathophysiology of the central nervous system (CNS) in neuronal autoimmunity is not clearly understood. In the present work, we show that treatment of mice with L-NAME, an iNOS inhibitor, during the antigen-priming phase primarily alters brain pathology, while in the subsequent effector phase of the immune response, the spinal cord is involved. Inhibition of iNOS during the priming phase of the immune res…

0301 basic medicineCD4-Positive T-LymphocytesPathologyexperimental autoimmune encephalomyelitisNitric Oxide Synthase Type IIApoptosismedicine.disease_causeAutoimmunityMice0302 clinical medicineImmunology and AllergyEnzyme InhibitorsOriginal ResearchMice KnockoutbiologyExperimental autoimmune encephalomyelitisautoimmunityCell DifferentiationNitric oxide synthaseOligodendrogliamedicine.anatomical_structureNG-Nitroarginine Methyl EsterIntegrin alpha Mlcsh:Immunologic diseases. Allergymedicine.medical_specialtyEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisLymphoid TissueCentral nervous systemImmunology03 medical and health sciencesInterferon-gammaImmune systemmedicineAnimalsHumansNOS2−/− neuroinflammationNeuroinflammationbusiness.industryMultiple sclerosisinducible nitric oxide synthaseDendritic Cellsmedicine.diseasecentral nervous systemMice Inbred C57BL030104 developmental biologybiology.proteinbusinesslcsh:RC581-607030215 immunologyGranulocytesFrontiers in Immunology
researchProduct

Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN)

2017

Background and aims: Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network). Methods: Observational, multicenter, retrospective and prospective study involving about 40 Italian clinical centers. Genetic testing of the appropriate candidate genes at one of six molecular diagnostic laboratories serving as nationw…

0301 basic medicineCandidate geneGenetic testingSettore MED/09 - Medicina InternaDatabases FactualDNA Mutational AnalysisDiseaseFamilial hypercholesterolemia030204 cardiovascular system & hematology0302 clinical medicineDyslipidemias; Genetic testing; National network; Internal Medicine; Cardiology and Cardiovascular MedicineRisk FactorsProspective StudiesProgram DevelopmentProspective cohort studymedicine.diagnostic_testGeneral MedicinePrognosisCholesterolPhenotypeItalyCardiology and Cardiovascular MedicineGenetic Markersmedicine.medical_specialtyNational networkDyslipidemias; Genetic testing; National networkMEDLINEHyperlipoproteinemia Type II03 medical and health sciencesDatabasesInternal medicinemedicineInternal MedicineHumansGenetic Predisposition to DiseaseFactualGenetic testingRetrospective StudiesDyslipidemiasbusiness.industrySettore MED/13 - ENDOCRINOLOGIARetrospective cohort studymedicine.diseaseAtherosclerosisDyslipidemias; Genetic testing; National network; Atherosclerosis; Cholesterol; DNA Mutational Analysis; Databases Factual; Genetic Markers; Genetic Predisposition to Disease; Humans; Hyperlipoproteinemia Type II; Italy; Phenotype; Prognosis; Program Development; Prospective Studies; Retrospective Studies; Risk Factors; Mutation; Internal Medicine; Cardiology and Cardiovascular Medicine030104 developmental biologyEndocrinologyDyslipidemiaGenetic markerMutationbusiness
researchProduct

New insights into the mechanism of action of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives endowed with anticancer potential

2018

Due to the scarce biological profile, the pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one scaffold (PBT) has been recently explored as promising core for potential anticancer candidates. Several suitably decorated derivatives (PBTs) exhibited antiproliferative activity in the low-micromolar range associated with apoptosis induction and cell cycle arrest on S phase. Herein, we selected the most active derivatives and submitted them to further biological explorations to deepen the mechanism of action. At first, a DNA targeting is approached by means of flow Linear Dichroism experiments so as to evaluate how small planar molecules might interact with DNA, including the interference with the catal…

0301 basic medicineCell cycle checkpointPyrazolo[1TetrazolesBiochemistrychemistry.chemical_compound0302 clinical medicineSalmonAntiproliferative; DNA-interacting; Intercalation; Linear dichroism; Molecular docking; Pyrazolo[12-a]benzo[1234]tetrazin-3-one; Topoisomerase II; Biochemistry; Molecular MedicineDrug DiscoveryDNA-interactingBase PairingADMEbiologyIntercalating AgentsMolecular Docking Simulation030220 oncology & carcinogenesisMolecular Medicinemedicine.symptomtopoisomerase II3StereochemistryIn silico2Antineoplastic Agentslinear dichroism03 medical and health sciencesantiproliferativeintercalationmedicineAnimalsHumansDNA Cleavage2-a]benzo[1Pharmacology4]tetrazin-3-oneBinding SitesTopoisomeraseOrganic ChemistryDNAmolecular dockingSettore CHIM/08 - Chimica FarmaceuticaChemical spaceProtein Structure TertiaryDNA Topoisomerases Type II030104 developmental biologyMechanism of actionchemistryCatalytic cyclebiology.proteinpyrazolo[12-a]benzo[1234]tetrazin-3-oneDNAChemical Biology & Drug Design
researchProduct

Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in met…

2020

Abstract 2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected…

0301 basic medicineDNA damageClinical BiochemistryBone NeoplasmsNitric Oxide Synthase Type INitric OxideBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePeroxynitrous AcidHumansMTT assayViability assaylcsh:QH301-705.5Reactive nitrogen speciesSettore CHIM/02 - Chimica FisicaOsteosarcomalcsh:R5-920Settore BIO/16 - Anatomia UmanaOrganic ChemistryDNAReactive Nitrogen Species2-MethoxyestradiolPeroxynitrous acid030104 developmental biologychemistrylcsh:Biology (General)Settore CHIM/03 - Chimica Generale E InorganicaCancer cellBiophysicslcsh:Medicine (General)030217 neurology & neurosurgeryPeroxynitrite2 methoxyestradiol nitric oxide chemotherapyResearch PaperRedox Biology
researchProduct

Microparticles harbouring Sonic hedgehog morphogen improve the vasculogenesis capacity of endothelial progenitor cells derived from myocardial infarc…

2019

Aims Endothelial progenitor cells (EPC) play a role in endothelium integrity maintenance and regeneration. Decreased numbers of EPC or their impaired function correlates with an increase in cardiovascular events. Thus, EPC are important predictors of cardiovascular mortality and morbidity. Microparticles carrying Sonic hedgehog (Shh) morphogen (MPShh+) trigger pro-angiogenic responses, both in endothelial cells and in ischaemic rodent models. Here, we propose that MPShh+ regulates EPC function, thus enhancing vasculogenesis, and correcting the defects in dysfunctional EPC obtained from acute myocardial infarction (AMI) patients. Methods and results The mechanisms underlying Shh pathway func…

0301 basic medicineEndotheliumNitric Oxide Synthase Type IIIPhysiologyAngiogenesis[SDV]Life Sciences [q-bio]Myocardial InfarctionMice NudeNeovascularization PhysiologicAcute myocardial infarction030204 cardiovascular system & hematologyMicroparticlesZinc Finger Protein GLI103 medical and health sciences0302 clinical medicineVasculogenesisCell-Derived MicroparticlesPhysiology (medical)Paracrine CommunicationVasculogenesismedicineAnimalsHumansHedgehog ProteinsProgenitor cellSonic hedgehogAngiogenic ProteinsCells CulturedComputingMilieux_MISCELLANEOUSEndothelial progenitor cellsbiologybusiness.industryNitric oxideSmoothened ReceptorHedgehog signaling pathwayPatched-1 ReceptorVascular endothelial growth factor A030104 developmental biologymedicine.anatomical_structureCase-Control StudiesKLF2embryonic structuresCancer researchbiology.proteincardiovascular systemCardiology and Cardiovascular MedicinebusinessSignal Transductioncirculatory and respiratory physiology
researchProduct

Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, a…

2019

Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents w…

0301 basic medicineGene isoformPhytochemicalsNitric Oxide Synthase Type IIVasodilationmedicine.disease_causeBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicineNeoplasmsmedicineAnimalsHumansEnzyme InhibitorsPharmacologyBiological ProductsNatural productMolecular StructurebiologySmall moleculeAnti-Bacterial AgentsEnzyme ActivationNitric oxide synthase030104 developmental biologyBiochemistrychemistry030220 oncology & carcinogenesisCancer cellbiology.proteinCarcinogenesisBiochemical Pharmacology
researchProduct

Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation.

2017

Organ fibrosis is characterized by a chronic wound-healing response, with excess deposition of extracellular matrix components. Here, collagen type I represents the most abundant scar component and a primary target for antifibrotic therapies. Liver fibrosis can progress to cirrhosis and primary liver cancer, which are the major causes of liver related morbidity and mortality. However, a (pro-)collagen type I specific therapy remains difficult and its therapeutic abrogation may incur unwanted side effects. We therefore designed tetracycline-regulated procollagen alpha1(I) short hairpin (sh)RNA expressing mice that permit a highly efficient inducible knockdown of the procollagen alpha1(I) gen…

0301 basic medicineGenetically modified mouseLiver CirrhosisPathologymedicine.medical_specialtyCirrhosisInflammationMice TransgenicCollagen Type ISmall hairpin RNAExtracellular matrix03 medical and health sciencesMiceFibrosismedicineAnimalsRNA Small InterferingMolecular BiologyCells CulturedGene knockdownExtracellular Matrix ProteinsChemistryMouse Embryonic Stem CellsFibroblastsmedicine.diseaseProcollagen peptidaseDisease Models Animal030104 developmental biologyGene Expression RegulationGene Knockdown TechniquesCancer researchmedicine.symptomProcollagenMatrix biology : journal of the International Society for Matrix Biology
researchProduct

A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.

2017

Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…

0301 basic medicineGenome instabilityMaleliver; Hepatocellular carcinoma; DNA damage response; replication stress; apoptosisCancer ResearchDNA RepairCarcinogenesisFas-Associated Death Domain ProteinApoptosisurologic and male genital diseasesDNA damage responseDna Damage Response ; Apoptosis ; Hepatocellular Carcinoma ; Liver ; Replication StressHistonesMice0302 clinical medicineRisk FactorsFADDPhosphorylationCellular SenescenceCaspase 8biologyLiver Neoplasmshepatocellular carcinomaLiver regeneration3. Good healthHistoneOncologyReceptors Tumor Necrosis Factor Type I030220 oncology & carcinogenesisReceptor-Interacting Protein Serine-Threonine KinasesFemalebiological phenomena cell phenomena and immunityCell agingCarcinoma HepatocellularDNA damageDNA repairreplication stressCaspase 8liverArticleGenomic Instability03 medical and health sciencesAnimalsHepatectomyHumansCrosses GeneticCell ProliferationJNK Mitogen-Activated Protein KinasesCell BiologyLiver Regeneration030104 developmental biologyImmunologyChronic Diseasebiology.proteinCancer researchHepatocytesMyeloid Cell Leukemia Sequence 1 ProteinDNA Damage
researchProduct