Search results for "(ERP)"
showing 10 items of 7260 documents
Joint interpretation of seismic refraction tomography and electrical resistivity tomography by cluster analysis to detect buried cavities
2020
Abstract In the last few years, the geophysical methods of seismic refraction tomography (SRT) and electrical resistivity tomography (ERT) are among the most used geophysical techniques for the reconstruction of subsoil geometries, for the investigation of underground cavities and also for the archaeological prospecting. However, the main disadvantage of each geophysical method is the difficulty of final interpretation of the data. In order to eliminate artifacts and generally improve the reliability and accuracy of geophysical interpretation, it is useful to perform a joint approach of different geophysical methods, also introducing the a priori information. In this work, it is shown the i…
Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing
2019
[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…
Automatic emulator and optimized look-up table generation for radiative transfer models
2017
This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…
Multioutput Automatic Emulator for Radiative Transfer Models
2018
This paper introduces a methodology to construct emulators of costly radiative transfer models (RTMs). The proposed methodology is sequential and adaptive, and it is based on the notion of acquisition functions in Bayesian optimization. Here, instead of optimizing the unknown underlying RTM function, one aims to achieve accurate approximations. The Automatic Multi-Output Gaussian Process Emulator (AMO-GAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the promising capabilities of the method for the const…
Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe
2021
Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…
Understanding deep learning in land use classification based on Sentinel-2 time series
2020
AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …
Validation of HF radar sea surface currents in the Malta-Sicily Channel
2019
Abstract A network of High-Frequency radar (HFR) stations runs operationally in the Malta-Sicily Channel (MSC), Central Mediterranean Sea, providing sea surface current maps with high temporal (1 h) and spatial (3 × 3 km) resolutions since August 2012. Comparisons with surface drifter data and near-surface Acoustic Doppler Current Profiler (ADCP) observations, as well as radar site-to-site baseline analyses, provide quantitative assessments of HFR velocities accuracy. Twenty-two drifters were deployed within the HFR domain of coverage between December 2012 and October 2013. Additionally, six ADCP vertical current profiles were collected at selected positions during a dedicated field survey.…
ASSESSING TRACE ELEMENT (DIS)EQUILIBRIUM AND THE APPLICATION OF SINGLE ELEMENT THERMOMETERS IN METAMORPHIC ROCKS
2018
Abstract Empirical and experimental calibration of single element solubility thermometers, such as Zr-in-rutile, Zr-in-titanite, Ti-in-zircon, and Ti-in-quartz, within the past 13 years has greatly expanded our ability to assess the pressure and temperature conditions of individual minerals associated with specific textures in metamorphic rocks. Combined with advances in in situ techniques for analyzing trace concentrations, this has led to an increase in the combined use of single element thermometers, geochronometers, and isotope ratios, often simultaneously, in metamorphic minerals. Here we review the calibration and application of single element thermometers at the pressure and temperat…
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
2020
Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…
Comparison of cloud-reconstruction methods for time series of composite NDVI data
2010
Land cover change can be assessed from ground measurements or remotely sensed data. As regards remotely sensed data, such as NDVI (Normalized Difference Vegetation Index) parameter, the presence of atmospherically contaminated data in the time series introduces some noise that may blur the change analysis. Several methods have already been developed to reconstruct NDVI time series, although most methods have been dedicated to reconstruction of acquired time series, while publicly available databases are usually composited over time. This paper presents the IDR (iterative Interpolation for Data Reconstruction) method, a new method designed to approximate the upper envelope of the NDVI time s…