Search results for "-Laplacian"

showing 10 items of 103 documents

The convective eigenvalues of the one–dimensional p–Laplacian as p → 1

2020

Abstract This paper studies the limit behavior as p → 1 of the eigenvalue problem { − ( | u x | p − 2 u x ) x − c | u x | p − 2 u x = λ | u | p − 2 u , 0 x 1 , u ( 0 ) = u ( 1 ) = 0 . We point out that explicit expressions for both the eigenvalues λ n and associated eigenfunctions are not available (see [16] ). In spite of this hindrance, we obtain the precise values of the limits lim p → 1 + ⁡ λ n . In addition, a complete description of the limit profiles of the eigenfunctions is accomplished. Moreover, the formal limit problem as p → 1 is also addressed. The results extend known features for the special case c = 0 ( [6] , [28] ).

010101 applied mathematicsApplied Mathematics010102 general mathematicsp-LaplacianLimit (mathematics)0101 mathematicsEigenfunction01 natural sciencesAnalysisEigenvalues and eigenvectorsMathematicsMathematical physicsJournal of Mathematical Analysis and Applications
researchProduct

Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations

2016

Abstract In this paper we approximate a Kantorovich potential and a transport density for the mass transport problem of two measures (with the transport cost given by a Finsler distance), by taking limits, as p goes to infinity, to a family of variational problems of p-Laplacian type. We characterize the Euler–Lagrange equation associated to the variational Kantorovich problem. We also obtain different characterizations of the Kantorovich potentials and a Benamou–Brenier formula for the transport problem.

010101 applied mathematicsMass transportApplied Mathematics010102 general mathematicsp-LaplacianApplied mathematics0101 mathematicsMass transportation01 natural sciencesAnalysisMathematicsAdvances in Calculus of Variations
researchProduct

Critical points in open sublevels and multiple solutions for parameter-depending quasilinear elliptic equations

2014

We investigate the existence of multiple nontrivial solutions of a quasilinear elliptic Dirichlet problem depending on a parameter $\lambda>0$ of the form $$ -\Delta_pu=\lambda f(u)\quad\mbox{in }\ \Omega,\quad u=0\quad\mbox{on }\ \partial\Omega, $$ where $\Omega\subset \mathbb{R}^N$ is a bounded domain, $\Delta_p$, $1 < p < +\infty$, is the $p$-Laplacian, and $f: \mathbb{R}\to \mathbb{R}$ is a continuous function satisfying a subcritical growth condition. More precisely, we establish a variational approach that when combined with differential inequality techniques, allows us to explicitly describe intervals for the parameter $\lambda$ for which the problem under consideration admits nontri…

35B30Applied Mathematics35B3835J20p-Laplacian Dirichlet problemAnalysisAdvances in Differential Equations
researchProduct

Stress concentration for closely located inclusions in nonlinear perfect conductivity problems

2019

We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p \leq N$. We prove optimal $L^\infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsZero (complex analysis)Perfect conductorAnalysiGradient blow-upType (model theory)Conductivity01 natural sciences010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsFinsler p-Laplacian0101 mathematicsPerfect conductorAnisotropy35J25 35B44 35B50 (Primary) 35J62 78A48 58J60 (Secondary)AnalysisAnalysis of PDEs (math.AP)MathematicsStress concentration
researchProduct

Singular solutions to a quasilinear ODE

2005

In this paper, we prove the existence of infinitely many radial solutions having a singular behaviour at the origin for a superlinear problem of the form $-\Delta_pu=|u|^{\delta-1}u$ in $B(0,1)\setminus\{0\}\subset\mathbb R^N$,\, $u=0$ for $|x|=1$, where $N>p>1$ and $\delta>p-1$. Solutions are characterized by their nodal properties. The case $\delta+1 <\frac{Np}{N-p}$ is treated. The study of the singularity is based on some energy considerations and takes into account the classification of the behaviour of the possible solutions available in the literature. By following a shooting approach, we are able to deduce the main multiplicity result from some estimates on the rotation numbers asso…

Applied Mathematics34B1634B15Singular solutions superlinear problem multiplicity result p-Laplacian equation rotation number radial solutionsAnalysis35J60
researchProduct

Turán type inequalities for generalized inverse trigonometric functions

2013

In this paper we study the inverse of the eigenfunction $\sin_p$ of the one-dimensional $p$-Laplace operator and its dependence on the parameter $p$, and we present a Tur\'an type inequality for this function. Similar inequalities are given also for other generalized inverse trigonometric and hyperbolic functions. In particular, we deduce a Tur\'an type inequality for a series considered by Ramanujan, involving the digamma function.

Bernstein functionsPure mathematicsTurán-type inequalitiesGeneralized inverseSeries (mathematics)General Mathematics33C99 33B99ta111Hyperbolic functionMathematics::Classical Analysis and ODEsInverseEigenfunctions of p-LaplacianEigenfunctionRamanujan's sumGeneralized trigonometric functionsymbols.namesakeDigamma functionMathematics - Classical Analysis and ODEsCompletely monotone functionsLog-convexitysymbolsTrigonometric functionsLog-concavityMathematicsFilomat
researchProduct

PDE triangular Bézier surfaces: Harmonic, biharmonic and isotropic surfaces

2011

We approach surface design by solving second-order and fourth-order Partial Differential Equations (PDEs). We present many methods for designing triangular Bézier PDE surfaces given different sets of prescribed control points and including the special cases of harmonic and biharmonic surfaces. Moreover, we introduce and study a second-order and a fourth-order symmetric operator to overcome the anisotropy drawback of the harmonic and biharmonic operators over triangular Bézier surfaces. © 2010 Elsevier B.V. All rights reserved.

Bézier surfaceSurface (mathematics)Bézier surfacePartial differential equationLaplacian operatorPDE surfaceApplied MathematicsMathematical analysisHarmonic (mathematics)Bi-Laplacian operatorBiharmonic Bézier surfaceIsotropyComputational MathematicsPDE surfaceBiharmonic equationLaplace operatorMathematics
researchProduct

Calderón problem for the p-Laplace equation : First order derivative of conductivity on the boundary

2016

We recover the gradient of a scalar conductivity defined on a smooth bounded open set in Rd from the Dirichlet to Neumann map arising from the p-Laplace equation. For any boundary point we recover the gradient using Dirichlet data supported on an arbitrarily small neighbourhood of the boundary point. We use a Rellich-type identity in the proof. Our results are new when p 6 = 2. In the p = 2 case boundary determination plays a role in several methods for recovering the conductivity in the interior. peerReviewed

Calderón problemp-LaplacianMathematics::Spectral Theory
researchProduct

A model of capillary phenomena in RN with subcritical growth

2020

This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.

Capillary phenomenaDirichlet boundary value problemSettore MAT/05 - Analisi MatematicaCapillary actionGeneral MathematicsSub criticalMechanicsSobolev spaceP-Laplacian-like operatorMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct

Fractional p-Laplacian evolution equations

2016

Abstract In this paper we study the fractional p-Laplacian evolution equation given by u t ( t , x ) = ∫ A 1 | x − y | N + s p | u ( t , y ) − u ( t , x ) | p − 2 ( u ( t , y ) − u ( t , x ) ) d y for  x ∈ Ω ,  t > 0 , 0 s 1 , p ≥ 1 . In a bounded domain Ω we deal with the Dirichlet problem by taking A = R N and u = 0 in R N ∖ Ω , and the Neumann problem by taking A = Ω . We include here the limit case p = 1 that has the extra difficulty of giving a meaning to u ( y ) − u ( x ) | u ( y ) − u ( x ) | when u ( y ) = u ( x ) . We also consider the Cauchy problem in the whole R N by taking A = Ω = R N . We find existence and uniqueness of strong solutions for each of the above mentioned problem…

Cauchy problemDirichlet problemApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysis01 natural sciences010101 applied mathematicsBounded functionDomain (ring theory)Neumann boundary conditionp-LaplacianInitial value problemUniqueness0101 mathematicsMathematicsMathematical physicsJournal de Mathématiques Pures et Appliquées
researchProduct