Search results for "-Laplacian"

showing 10 items of 103 documents

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian

2014

We study a parametric nonlinear periodic problem driven by the scalar $p$-Laplacian. We show that if $\hat \lambda_1 >0$ is the first eigenvalue of the periodic scalar $p$-Laplacian and $\lambda> \hat \lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.

PhysicsApplied MathematicsScalar (mathematics)AnalysiGeneral MedicineMathematics::Spectral TheoryLambdaSecond deformation theoremParametric equationNonlinear systemp-LaplacianConstant sign and nodal solutionExtremal solutionDivide-and-conquer eigenvalue algorithmParametric equationAnalysisEigenvalues and eigenvectorsParametric statisticsMathematical physics
researchProduct

Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian

2021

Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.

PhysicsQA299.6-433sign-changing coefficientmultiple fixed pointsNonlocal problemsp-LaplacianDegenerate energy levels35j2035j25Settore MAT/05 - Analisi Matematica35q74p-LaplacianMultiplicity (chemistry)AnalysisMathematical physicsAdvances in Nonlinear Analysis
researchProduct

The behavior of solutions of a parametric weighted (p, q)-laplacian equation

2021

<abstract><p>We study the behavior of solutions for the parametric equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda >0, $\end{document} </tex-math></disp-formula></p> <p>under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) > 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted …

Positive and negative solutionsGeneral MathematicsNodal solutionsLambdaOmegaCombinatoricssymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaQA1-939FOS: Mathematicspositive and negative solutionsResonant Carathéodory functionudc:517.956Physics35J20 35J60Spectrum (functional analysis)weighted (pWeighted (p q)-LaplacianDifferential operatorresonant Carathéodory functionweighted (pq)-LaplacianDirichlet boundary conditionBounded functionq)-laplacianDomain (ring theory)symbolsnodal solutionsParametric power termLaplace operatorMathematicsparametric power termAnalysis of PDEs (math.AP)
researchProduct

Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator

2017

We consider a discrete Dirichlet boundary value problem of equations with the (p,q)-Laplacian operator in the principal part and prove the existence of at least two positive solutions. The assumptions on the reaction term ensure that the Euler-Lagrange functional, corresponding to the problem, satisfies an abstract two critical points result.

Positive solutionDifference equations(PS)-conditionpositive solutionsSettore MAT/05 - Analisi MatematicaDifference equationlcsh:Mathematics(pq)-Laplacian operator(p q)-Laplacian operatorlcsh:QA1-939Electronic Journal of Differential Equations
researchProduct

\( L^{1} \) existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions

2007

Abstract In this paper we study the questions of existence and uniqueness of weak and entropy solutions for equations of type − div a ( x , D u ) + γ ( u ) ∋ ϕ , posed in an open bounded subset Ω of R N , with nonlinear boundary conditions of the form a ( x , D u ) ⋅ η + β ( u ) ∋ ψ . The nonlinear elliptic operator div a ( x , D u ) is modeled on the p-Laplacian operator Δ p ( u ) = div ( | D u | p − 2 D u ) , with p > 1 , γ and β are maximal monotone graphs in R 2 such that 0 ∈ γ ( 0 ) and 0 ∈ β ( 0 ) , and the data ϕ ∈ L 1 ( Ω ) and ψ ∈ L 1 ( ∂ Ω ) .

Pure mathematicsApplied MathematicsMathematical analysisSemi-elliptic operatorElliptic operatorHalf-period ratiop-LaplacianFree boundary problemBoundary value problemUniquenessLaplace operatorMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator

2017

We prove the existence of weak solutions to the Dirichlet boundary value problem for equations involving the $p(x)$-Laplacian-like operator in the principal part, with reaction term satisfying a sub-critical growth condition. We establish the existence of at least one nontrivial weak solution and three weak solutions, by using variational methods and critical point theory.

Pure mathematicsApplied MathematicsOperator (physics)010102 general mathematicsdirichlet boundary value problem01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicaP(x)-Laplacian-like operatorQA1-939symbolsvariable exponent sobolev spaceBoundary value problem0101 mathematics$p(x)$-laplacian-like operatorLaplace operatorMathematicsMathematicsElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold

2019

We prove the existence of a nontrivial solution for a nonlinear (p, q)-Laplacian problem with Neumann boundary condition, on a non compact Riemannian manifold. The idea is to reduce the problem in variational form, which means to consider the critical points of the corresponding Euler-Lagrange functional in an Orlicz-Sobolev space. (C) 2019 Elsevier Inc. All rights reserved.

Pure mathematicsApplied MathematicsWeak solution010102 general mathematicsRiemannian manifoldSpace (mathematics)01 natural sciences010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi MatematicaNeumann boundary condition(p q)-Laplacian operator Riemannian manifold Weak solution0101 mathematicsLaplace operatorAnalysisMathematics
researchProduct

Multiplicity theorems for the Dirichlet problem involving the p-Laplacian

2003

Multiplicity theorems for the Dirichlet problem involving the p-Laplacian were proved using variational approach. It was shown that there existed an open interval and a positive real number, and each problem admits at least three weak solutions. Results on the existence of at least three weak solutions for the Dirichlet problems were established.

Pure mathematicsApplied Mathematicsp-LaplacianMathematical analysisMultiple solutionDirichlet L-functionAnalysiDirichlet's energyMathematics::Spectral TheoryCritical pointDirichlet kernelsymbols.namesakeDirichlet eigenvalueDirichlet's principleDirichlet boundary conditionsymbolsMathematics (all)General Dirichlet seriesAnalysisDirichlet seriesDirichlet problemMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian

2012

Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.

Pure mathematicsApplied Mathematicsthree-critical-points theoremdifferential inclusion problemType (model theory)Lipschitz continuityDifferential inclusionCritical points of locally Lipschitz continuous functionalcritical points of locally Lipschitz continuous functionalsp-LaplacianDiscrete Mathematics and Combinatoricsp(x)-Laplacian; variable exponent Sobolev space; critical points of locally Lipschitz continuous functionals; differential inclusion problem; three-critical-points theoremp(x)-Laplacianvariable exponent Sobolev spaceAnalysisMathematics
researchProduct

Landesman-Lazer type (p, q)-equations with Neumann condition

2020

We consider a Neumann problem driven by the (p, q)-Laplacian under the Landesman-Lazer type condition. Using the classical saddle point theorem and other classical results of the calculus of variations, we show that the problem has at least one nontrivial weak solution.

Pure mathematicsGeneral MathematicsWeak solution010102 general mathematicsNeumann problemcritical pointsaddle point theoremGeneral Physics and AstronomyType (model theory)01 natural sciences(pq)-LaplacianSaddle point theorem010101 applied mathematicsType conditionSettore MAT/05 - Analisi MatematicaNeumann boundary condition0101 mathematicsLandesman-Lazer type conditionMathematicsActa Mathematica Scientia
researchProduct