Search results for "0-completene"
showing 4 items of 4 documents
Multi-valued $$F$$ F -contractions in 0-complete partial metric spaces with application to Volterra type integral equation
2013
We study the existence of fixed points for multi-valued mappings that satisfy certain generalized contractive conditions in the setting of 0-complete partial metric spaces. We apply our results to the solution of a Volterra type integral equation in ordered 0-complete partial metric spaces.
A note on best approximation in 0-complete partial metric spaces
2014
We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.
Common Fixed Points in a Partially Ordered Partial Metric Space
2013
In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
Fixed points and completeness on partial metric spaces
2015
Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a selfmapping on a partial metric space that characterizes the partial metric 0-completeness. In this paper we prove a fixed point result for a new class of…