Search results for "010103 numerical & computational mathematics"
showing 10 items of 260 documents
Estimates for the differences of positive linear operators and their derivatives
2019
The present paper deals with the estimate of the differences of certain positive linear operators and their derivatives. Oxur approach involves operators defined on bounded intervals, as Bernstein operators, Kantorovich operators, genuine Bernstein-Durrmeyer operators, and Durrmeyer operators with Jacobi weights. The estimates in quantitative form are given in terms of the first modulus of continuity. In order to analyze the theoretical results in the last section, we consider some numerical examples.
Frames and weak frames for unbounded operators
2020
In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.
A low complexity distributed cluster based algorithm for spatial prediction
2017
Los mapas del entorno radioeléctrico (REM) pueden ser una herramienta esencial para numerosas aplicaciones en las futuras redes inalámbricas 5G. En este trabajo, empleamos un popular método geoestadístico llamado kriging ordinario para estimar el REM de un área cubierta por un eNodeB equipado con múltiples antenas. Los sensores inalámbricos se distribuyen por el área de interés y se organizan clústeres adaptativos de sensores para mejorar la calidad de la estimación del canal. En este trabajo, modificamos el algoritmo de clustering distribuido propuesto en un trabajo anterior para reducir la complejidad de la predicción de kriging. Se realizan simulaciones para detallar la técnica de formac…
Indefinite integrals involving the incomplete elliptic integrals of the first and second kinds
2016
ABSTRACTA substantial number of indefinite integrals are presented for the incomplete elliptic integrals of the first and second kinds. The number of new results presented is about three times the total number to be found in the current literature. These integrals were obtained with a Lagrangian method based on the differential equations which these functions obey. All results have been checked numerically with Mathematica. Similar results for the incomplete elliptic integral of the third kind will be presented separately.
Indefinite integrals involving the incomplete elliptic integral of the third kind
2016
ABSTRACTA substantial number of new indefinite integrals involving the incomplete elliptic integral of the third kind are presented, together with a few integrals for the other two kinds of incomplete elliptic integral. These have been derived using a Lagrangian method which is based on the differential equations which these functions satisfy. Techniques for obtaining new integrals are discussed, together with transformations of the governing differential equations. Integrals involving products combining elliptic integrals of different kinds are also presented.
Rationalizability of square roots
2021
Abstract Feynman integral computations in theoretical high energy particle physics frequently involve square roots in the kinematic variables. Physicists often want to solve Feynman integrals in terms of multiple polylogarithms. One way to obtain a solution in terms of these functions is to rationalize all occurring square roots by a suitable variable change. In this paper, we give a rigorous definition of rationalizability for square roots of ratios of polynomials. We show that the problem of deciding whether a single square root is rationalizable can be reformulated in geometrical terms. Using this approach, we give easy criteria to decide rationalizability in most cases of square roots i…
A note on cocharacter sequence of Jordan upper triangular matrix algebra
2016
Let UJn(F) be the Jordan algebra of n × n upper triangular matrices over a field F of characteristic zero. This paper is devoted to the study of polynomial identities satisfied by UJ2(F) and UJ3(F). In particular, the goal is twofold. On one hand, we complete the description of G-graded polynomial identities of UJ2(F), where G is a finite abelian group. On the other hand, we compute the Gelfand–Kirillov dimension of the relatively free algebra of UJ2(F) and we give a bound for the Gelfand–Kirillov dimension of the relatively free algebra of UJ3(F).
The diamond partial order for strong Rickart rings
2016
The diamond partial order has been first introduced for matrices, and then discussed also in the general context of *-regular rings. We extend this notion to Rickart rings, and state various properties of the diamond order living on the so-called strong Rickart rings. In particular, it is compared with the weak space preorder and the star order; also existence of certain meets and joins under diamond order is discussed.
Existence of dynamical low-rank approximations to parabolic problems
2021
The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions.
Indefinite integrals of special functions from integrating factors
2019
Some general integrals are presented which were obtained from two integrating factors f(x) and fˆ(x) for the first two and last two terms, respectively, of the second-order linear ordinary differen...