Search results for "02.30.Mv"
showing 2 items of 2 documents
Newton algorithm for Hamiltonian characterization in quantum control
2014
We propose a Newton algorithm to characterize the Hamiltonian of a quantum system interacting with a given laser field. The algorithm is based on the assumption that the evolution operator of the system is perfectly known at a fixed time. The computational scheme uses the Crank-Nicholson approximation to explicitly determine the derivatives of the propagator with respect to the Hamiltonians of the system. In order to globalize this algorithm, we use a continuation method that improves its convergence properties. This technique is applied to a two-level quantum system and to a molecular one with a double-well potential. The numerical tests show that accurate estimates of the unknown paramete…
Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case
2018
We study quasi-normal modes of black holes, with a focus on resonant (or quasi-normal mode) expansions, in a geometric frame based on the use of conformal compactifications together with hyperboloidal foliations of spacetime. Specifically, this work extends the previous study of Schwarzschild in this geometric approach to spherically symmetric asymptotically flat black hole spacetimes, in particular Reissner-Nordstr\"om. The discussion involves, first, the non-trivial technical developments needed to address the choice of appropriate hyperboloidal slices in the extended setting as well as the generalization of the algorithm determining the coefficients in the expansion of the solution in te…