Search results for "0204 chemical engineering"
showing 10 items of 273 documents
Performance assessment of institutional photovoltaic based energy system for operating as a micro-grid
2020
Abstract A building integrated photovoltaic (PV) system with energy storage within an institution may need appropriate coordination among distributed energy sources (DERs). It is required to have an appropriate energy management strategy to improve system performance as well as to operate it as a micro-grid during the grid outage condition. In this paper, TERI’s (India) Retreat Facility’s energy system has been used, and its performance with a distributed generator has been assessed with operational strategies for fulfilling the institutional load demand in coordination with the PV, grid and battery storage; and with possibility of operating it as a micro-grid during the grid outage period …
Grid interaction and environmental impact of a net zero energy building
2020
Abstract The concept of Net Zero Energy Building (NZEB), as a grid-connected building that generates as much energy as it uses over a given period, has been developing through policies and research agendas during the last decade as a contribution towards the decarbonization of the building sector. However, since the most applicable and widely used renewable energy supply options are non-programmable, the large-scale NZEBs diffusion into the existing power grids can seriously affect their stability having a relapse on operation costs and environmental impacts. In this context, the study aims at performing the design of the energy systems to be used in the case-study through a wide numbers of…
Coupling electrodialysis desalination with photovoltaic and wind energy systems for energy storage: Dynamic simulations and control strategy
2020
Abstract The presence of desalination systems in polygeneration facilities is usually limited by important difficulties in operating under non-stationary regimes typical of renewable energy sources. Reverse osmosis, namely the most common desalination technology, is characterised by slow dynamics that rarely adapts to the power fluctuations of renewables. Therefore, the possibility of using electrodialysis coupled with a hybrid photovoltaic/wind energy source was investigated in this work. In particular, the combination of photovoltaic and wind energy is very attractive in order to achieve a more stable energy production, while electrodialysis is claimed to be a more flexible process compar…
Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment
2019
Abstract Salinity gradients are a non-conventional source of renewable energy based on the recovery of the Gibbs free energy related to the mixing of solutions at different concentrations. Reverse Electrodialysis is a promising and innovative technology able to convert this energy directly into electric current. The worldwide availability of salinity gradients is limited to those locations where water bodies at different salinity levels are present. The present work analyses a number of different scenarios worldwide, in locations where salinity gradients are naturally available or generated by anthropogenic activities. A techno-economic model of the Reverse Electrodialysis process is presen…
Improving the rheometry of rubberized bitumen: experimental and computation fluid dynamics studies
2017
Abstract Multi-phase materials are common in several fields of engineering and rheological measurements are intensively adopted for their development and quality control. Unfortunately, due to the complexity of these materials, accurate measurements can be challenging. This is the case of bitumen-rubber blends used in civil engineering as binders for several applications such as asphalt concrete for road pavements but recently also for roofing membranes. These materials can be considered as heterogeneous blends of fluid and particles with different densities. Due to this nature the two components tends to separate and this phenomenon can be enhanced with inappropriate design and mixing. Thi…
Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA
2017
[EN] The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP) and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA). Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and t…
Supporting the Sustainable Energy Transition in the Canary Islands: Simulation and Optimization of Multiple Energy System Layouts and Economic Scenar…
2021
The Canary Islands have great potential for the implementation of sustainable energy systems due to its availability of natural resources. The archipelago is not connected to the mainland electricity grid and the current generation system is mainly based on traditional fossil fuel. Therefore, the islands strongly dependent on fuel importations, with high costs due to logistics. Furthermore, due to the inadequate coverage of residential heating and cooling needs, the per capita energy consumption is far below the Spanish national average. This occurrence has inspired an intense debate on the current development model of the Canary Archipelago, which has led to the implementation of actions a…
Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous
2020
Abstract Microalgae have promising applications in wastewater treatment because of their ability to use inorganic compounds such as nitrates and phosphates as nutrients for their growth. Microalgae are applied to the secondary and tertiary bio-treatment with two benefits: i) pollutants removal from wastewater; ii) production of microalgal biomass, that can be exploited as a source of biomass and biomolecules. In the present work, four different microalgal strains (two from culture collections and two isolated from Sicilian littoral) were tested in municipal sewage bioremediation. The sewage of a municipal plant, already processed with primary treatment, was used for the cultivation of micro…
Assessing the lighting systems flexibility for reducing and managing the power peaks in smart grids
2020
Abstract The application of “shiftable” or “modulable” load (i.e. washing machine, dishwasher, etc.) in a Smart Grid, can provide energy saving or modify the power flows in the grid, allowing a reduction of the electrical power peak. This paper explores the possibility to modulate the indoor artificial lighting to support this reduction. The study examines the impact of two different measures of power shaving. On the one hand, the change of Correlated Colour Temperature of the light source, and, on the other hand, the dimming of its luminous flux. The possibility to merge the above-mentioned technical solutions is also analyzed. Based on these strategies, several daily schedules of lighting…
A brine evaporative cooler/concentrator for autonomous thermal desalination units
2011
In recent years growing attention has been paid to the problem of brine disposal due to the raising awareness of significant environmental issues related to the use of desalination processes for fresh water production. This is particularly relevant when desalination units are located in remote sites, characterised by major complexity in the construction and management of intake and outfall structures. In the present work a novel device, named brine evaporative cooler/concentrator (BECC, patent pending), has been developed for coupling with small-scale thermal desalination plants in order to reduce the problem of brine disposal. Such device fulfils two different functions: i) cooling of the …