Search results for "03B35"

showing 8 items of 8 documents

Modal Consequence Relations Extending S4.3: An Application of Projective Unification

2016

We characterize all finitary consequence relations over $\mathbf{S4.3}$ , both syntactically, by exhibiting so-called (admissible) passive rules that extend the given logic, and semantically, by providing suitable strongly adequate classes of algebras. This is achieved by applying an earlier result stating that a modal logic $L$ extending $\mathbf{S4}$ has projective unification if and only if $L$ contains $\mathbf{S4.3}$ . In particular, we show that these consequence relations enjoy the strong finite model property, and are finitely based. In this way, we extend the known results by Bull and Fine, from logics, to consequence relations. We also show that the lattice of consequence relation…

projective unificationPure mathematicsUnificationLogicFinite model property02 engineering and technology68T15Lattice (discrete subgroup)01 natural sciencesadmissible rulesComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineeringCountable setFinitaryHeyting algebra08C150101 mathematics03B45MathematicsDiscrete mathematics010102 general mathematicsquasivarietiesModal logicstructural completenessconsequence relations03B35Distributive property06E25$\mathbf{S4.3}$S4.3020201 artificial intelligence & image processingNotre Dame Journal of Formal Logic
researchProduct

About Quotient Orders and Ordering Sequences

2017

Summary In preparation for the formalization in Mizar [4] of lotteries as given in [14], this article closes some gaps in the Mizar Mathematical Library (MML) regarding relational structures. The quotient order is introduced by the equivalence relation identifying two elements x, y of a preorder as equivalent if x ⩽ y and y ⩽ x. This concept is known (see e.g. chapter 5 of [19]) and was first introduced into the MML in [13] and that work is incorporated here. Furthermore given a set A, partition D of A and a finite-support function f : A → ℝ, a function Σ f : D → ℝ, Σ f (X)= ∑ x∈X f(x) can be defined as some kind of natural “restriction” from f to D. The first main result of this article ca…

AlgebraComputational Mathematicsordered finite sequencesquotient order03b35Applied MathematicsQA1-93906a05QuotientMathematicsMathematicsFormalized Mathematics
researchProduct

Some Remarks about Product Spaces

2018

Summary This article covers some technical aspects about the product topology which are usually not given much of a thought in mathematics and standard literature like [7] and [6], not even by Bourbaki in [4]. Let {Ti}i∈I be a family of topological spaces. The prebasis of the product space T = ∏ i∈I Ti is defined in [5] as the set of all π −1 i (V) with i ∈ I and V open in Ti . Here it is shown that the basis generated by this prebasis consists exactly of the sets ∏ i∈I Vi with Vi open in Ti and for all but finitely many i ∈ I holds Vi = Ti . Given I = {a} we have T ≅ Ta , given I = {a, b} with a≠ b we have T ≅ Ta ×Tb . Given another family of topological spaces {Si}i∈I such that Si ≅ Ti fo…

topologyApplied Mathematics020207 software engineering02 engineering and technology54b1068t99TopologyComputational Mathematics03b35Product (mathematics)QA1-9390202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingproduct spacesMathematicsTopology (chemistry)MathematicsFormalized Mathematics
researchProduct

Underlying Simple Graphs

2019

Summary In this article the notion of the underlying simple graph of a graph (as defined in [8]) is formalized in the Mizar system [5], along with some convenient variants. The property of a graph to be without decorators (as introduced in [7]) is formalized as well to serve as the base of graph enumerations in the future.

Theoretical computer scienceApplied Mathematics020207 software engineering0102 computer and information sciences02 engineering and technology68t9901 natural sciencesComputational Mathematics03b35010201 computation theory & mathematicsSimple (abstract algebra)underlying simple graphQA1-9390202 electrical engineering electronic engineering information engineering05c76Graph operationsgraph operationsMathematicsMathematicsofComputing_DISCRETEMATHEMATICSMathematicsFormalized Mathematics
researchProduct

About Supergraphs. Part III

2019

Summary The previous articles [5] and [6] introduced formalizations of the step-by-step operations we use to construct finite graphs by hand. That implicitly showed that any finite graph can be constructed from the trivial edgeless graph K 1 by applying a finite sequence of these basic operations. In this article that claim is proven explicitly with Mizar[4].

EpigraphTheoretical computer scienceApplied Mathematics68t99Part iiiComputational Mathematics03b35construction of finite graphsQA1-93905c76Graph operationssupergraphgraph operationsMathematicsMathematicsFormalized Mathematics
researchProduct

Natural Addition of Ordinals

2019

Summary In [3] the existence of the Cantor normal form of ordinals was proven in the Mizar system [6]. In this article its uniqueness is proven and then used to formalize the natural sum of ordinals.

natural sumApplied Mathematicshessenberg sumcantor normal form68t99ordinal numbersAlgebraMathematics::LogicComputational Mathematics03e1003b35QA1-939Natural (music)MathematicsMathematicsFormalized Mathematics
researchProduct

About Graph Mappings

2019

Summary In this articles adjacency-preserving mappings from a graph to another are formalized in the Mizar system [7], [2]. The generality of the approach seems to be largely unpreceeded in the literature to the best of the author’s knowledge. However, the most important property defined in the article is that of two graphs being isomorphic, which has been extensively studied. Another graph decorator is introduced as well.

Discrete mathematicsgraph isomorphism05c60Applied Mathematics020207 software engineering0102 computer and information sciences02 engineering and technology68t9901 natural sciencesComputational Mathematicsgraph homomorphism03b35010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringQA1-939Graph (abstract data type)Graph homomorphismGraph isomorphismMathematicsMathematicsFormalized Mathematics
researchProduct

About Vertex Mappings

2019

Summary In [6] partial graph mappings were formalized in the Mizar system [3]. Such mappings map some vertices and edges of a graph to another while preserving adjacency. While this general approach is appropriate for the general form of (multidi)graphs as introduced in [7], a more specialized version for graphs without parallel edges seems convenient. As such, partial vertex mappings preserving adjacency between the mapped verticed are formalized here.

graph isomorphismVertex (graph theory)05c60Applied Mathematics68t99CombinatoricsComputational Mathematicsgraph homomorphism03b35QA1-939Graph homomorphismGraph isomorphismMathematicsMathematicsofComputing_DISCRETEMATHEMATICSMathematicsFormalized Mathematics
researchProduct