Search results for "1-harmonic"
showing 4 items of 4 documents
Solutions of nonlinear PDEs in the sense of averages
2012
Abstract We characterize p-harmonic functions including p = 1 and p = ∞ by using mean value properties extending classical results of Privaloff from the linear case p = 2 to all pʼs. We describe a class of random tug-of-war games whose value functions approach p-harmonic functions as the step goes to zero for the full range 1 p ∞ .
Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere
2013
Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.
THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE
2014
We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…
Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup
2010
The 1-harmonic flow from the disk to the sphere with constant Dirichlet boundary conditions is analyzed in the case of rotational symmetry. Sufficient conditions on the initial datum are given, such that a unique classical solution exists for short times. Also, a sharp criterion on the boundary condition is identified, such that any classical solution will blow up in finite time. Finally, nongeneric examples of finite time blowup are exhibited for any boundary condition.