Search results for "12.38.-t"

showing 2 items of 2 documents

Observation of charmonium pairs produced exclusively in $pp$ collisions

2014

A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of $3{\rm\ fb}^{-1}$ collected at centre-of-mass energies of 7 and 8 TeV, $J/\psi J/\psi$ and $J/\psi\psi(2S)$ pairs are observed, which have been produced in the absence of any other activity inside the LHCb acceptance that is sensitive to charged particles in the pseudorapidity ranges $(-3.5,-1.5)$ and $(1.5,5.0)$. Searches are also performed for pairs of P-wave charmonia and limits are set on their production. The cross-sections for these processes, where the dimeson system has a rapidity between 2.0 and 4.5, are measu…

Nuclear and High Energy PhysicsParticle physicsNuclear TheorydiffractionFOS: Physical sciencesLHCb - Abteilung HofmannHEAVY-ION COLLISIONSQCD diffraction charmoniaNOHigh Energy Physics - ExperimentLuminosityHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum chromodynamiccharmonia; diffraction; QCDcharmonia; diffraction; QCD; Nuclear and High Energy PhysicsRapiditySDG 7 - Affordable and Clean EnergyNuclear ExperimentQCPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyhep-ex12.38.-tParticle physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronHEAVY-ION COLLISIONS; 450 GEV/C; DIFFRACTION; LHCQCDCromodinàmica quànticaLHCbDifracció450 GEV/CPseudorapidityPhysics::Accelerator PhysicscharmoniaFísica nuclearHigh Energy Physics::ExperimentProduction (computer science)LHCHEAVYFísica de partículesExperiments13.85.NiDiffractionQuantum chromodynamicsParticle Physics - ExperimentJournal of Physics G: Nuclear and Particle Physics
researchProduct

Nature of the light scalar mesons

2005

Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual $q\bar q$ structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional $q\bar q$ states. A strong diquark-antidiquark component is found for several states. The consideration of a glueball as dictated by quenched lattice QCD drives a coherent picture of the isoscalar mesons.

Nuclear and High Energy PhysicsParticle physicsMesonNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]IsoscalarHigh Energy Physics::Latticemeson massquark confinementLattice field theoryNuclear TheoryFOS: Physical sciencessparticles01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesquantum chromodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysics010308 nuclear & particles physicsGlueballHigh Energy Physics::PhenomenologyScalar (physics)lattice field theory12.39.-x 12.38.-tFísicaLattice QCDDiquarkHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentchiral symmetries
researchProduct