Search results for "13"
showing 10 items of 13634 documents
"Figure 11" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 60-88% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.
"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.
"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"
2023
Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
"Table 87" of "Measurements of $t\bar{t}$ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $pp$ coll…
2019
$m^{t\bar{t}}$ absolute differential cross-section at parton level. The parton level phase-space is limited to the region $p_T^{t,1} > 500~$GeV, $p_T^{t,2} > 350~$GeV.
"Table 120" of "Measurements of $t\bar{t}$ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $pp$ col…
2019
${p_{{T}}}^{t,1}$ correlation matrix for absolute differential cross-section in parton level
"Table 119" of "Measurements of $t\bar{t}$ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $pp$ col…
2019
${p_{{T}}}^{t,1}$ covariance matrix for absolute differential cross-section in parton level