Search results for "13.15.+g"

showing 10 items of 16 documents

CCDC 250973: Experimental Crystal Structure Determination

2005

Related Article: J.F.Schneider, M.Nieger, K.Nattinen, B.Lewall, E.Niecke, K.H.Dotz|2005|Eur.J.Org.Chem.|2005|1541|doi:10.1002/ejoc.200400800

(RS)-1217-Di-t-butyl-44-diphenylanthra(21-f)phenanthro(43-d)(13)-dioxepin-10131518-tetraone heptane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919442: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

(rac)-hexakis(mu-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919440: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

ΔΔΔ)-hexakis(mu-(RP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

A numerical property of Hilbert functions and lex segment ideals

2017

We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the Osequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.

13F20 13A15 13D40Settore MAT/02 - AlgebraBigraded algebraLex segment idealMathematics::Commutative AlgebraHilbert functionFOS: MathematicsSettore MAT/03 - GeometriaCommutative Algebra (math.AC)Mathematics - Commutative AlgebraBigraded algebra Hilbert function Lex segment idealBigraded algebra; Hilbert function; Lex segment ideal
researchProduct

On the Betti numbers of three fat points in P1 × P1

2019

In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.

13F20Fat points Hilbert functions Multiprojective spaces13A15Fat pointsMathematics - Commutative Algebra13D40Mathematics - Algebraic GeometrySettore MAT/02 - AlgebraFat points; Hilbert functions; Multiprojective spacesMultiprojective spacesSettore MAT/03 - GeometriaMathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Commutative Algebra; 13F20 13A15 13D40 14M0514M05Hilbert functions
researchProduct

OPERADS AND JET MODULES

2005

Let $A$ be an algebra over an operad in a cocomplete closed symmetric monoidal category. We study the category of $A$-modules. We define certain symmetric product functors of such modules generalising the tensor product of modules over commutative algebras, which we use to define the notion of a jet module. This in turn generalises the notion of a jet module over a module over a classical commutative algebra. We are able to define Atiyah classes (i.e. obstructions to the existence of connections) in this generalised context. We use certain model structures on the category of $A$-modules to study the properties of these Atiyah classes. The purpose of the paper is not to present any really de…

14F10Pure mathematicsFunctorPhysics and Astronomy (miscellaneous)Quantum algebraSymmetric monoidal category18G55Mathematics::Algebraic TopologyClosed monoidal categoryAlgebraMathematics - Algebraic GeometryTensor productMathematics::K-Theory and Homology18D50Mathematics::Category TheoryMathematics - Quantum AlgebraFOS: Mathematics18D50; 18G55; 13N15; 14F10Quantum Algebra (math.QA)Tensor product of modulesCommutative algebraAlgebraic Geometry (math.AG)Commutative property13N15MathematicsInternational Journal of Geometric Methods in Modern Physics
researchProduct

CCDC 777752: Experimental Crystal Structure Determination

2011

Related Article: Yuhui Kou, Hongqi Tao, Derong Cao, Zhiyong Fu, D.Schollmeyer, H.Meier|2010|Eur.J.Org.Chem.|2010|6464|doi:10.1002/ejoc.201000718

49141926-Pentabutoxy-2428303234-pentamethoxyhexacyclo[21.2.2.2^36^.2^811^.2^1316^.2^1821^]pentatriaconta-1(25)358101315182023262830323 4-pentadecaenebis(acetonitrile) clathrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 777751: Experimental Crystal Structure Determination

2011

Related Article: Yuhui Kou, Hongqi Tao, Derong Cao, Zhiyong Fu, D.Schollmeyer, H.Meier|2010|Eur.J.Org.Chem.|2010|6464|doi:10.1002/ejoc.201000718

49142628-pentabutoxy-1924303234-pentamethoxyhexacyclo[21.2.2.2^36^.2^811^.2^1316^.2^1821^]pentatriaconta-1(25)3581013151820232628303234-pentadecaene bis(acetonitrile) clathrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 902683: Experimental Crystal Structure Determination

2013

Related Article: Yu Chen, Derong Cao, Lingyun Wang, Minqing He, Lixia Zhou, Dieter Schollmeyer, Herbert Meier|2013|Chem.-Eur.J.|19|7064|doi:10.1002/chem.201204628

Ethyl ((91419242628303234-nonamethoxyhexacyclo[21.2.2.2^36^.2^811^.2^1316^.2^1821^]pentatriaconta-1(25)3581013151820232628303234-pentadecaen-4-yl)oxy)acetateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Milnor-Witt Motives

2020

We develop the theory of Milnor-Witt motives and motivic cohomology. Compared to Voevodsky's theory of motives and his motivic cohomology, the first difference appears in our definition of Milnor-Witt finite correspondences, where our cycles come equipped with quadratic forms. This yields a weaker notion of transfers and a derived category of motives that is closer to the stable homotopy theory of schemes. We prove a cancellation theorem when tensoring with the Tate object, we compare the diagonal part of our Milnor-Witt motivic cohomology to Minor-Witt K-theory and we provide spectra representing various versions of motivic cohomology in the $\mathbb{A}^1$-derived category or the stable ho…

Mathematics - Algebraic GeometryMathematics::K-Theory and HomologyMathematics::Category Theory11E70 13D15 14F42 19E15 19G38 (Primary) 11E81 14A99 14C35 19D45 (Secondary)FOS: Mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Algebraic Geometry (math.AG)Mathematics::Algebraic Topology
researchProduct