Search results for "14.20.Dh"

showing 5 items of 5 documents

The effective cross section for double parton scattering within a holographic AdS/QCD approach

2017

A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

correlation: two-particleNuclear and High Energy PhysicsParticle physicsp p: scatteringNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryHadronFOS: Physical sciencesParton01 natural sciences[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]quantum chromodynamics: holographyNuclear Theory (nucl-th)Nuclear physicsMomentumCross section (physics)12.38.AwHigh Energy Physics - Phenomenology (hep-ph)parton: multiple scattering0103 physical sciencesparton: correlation010306 general physicsNuclear Experimentparton: interaction[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]Quantum chromodynamicsPhysicsAdS/CFT correspondence010308 nuclear & particles physicsScattering[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::Phenomenology12.39.Kilcsh:QC1-999High Energy Physics - PhenomenologyAdS/CFT correspondence[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]14.20.DhPhysics::Accelerator Physics[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentlcsh:Physics
researchProduct

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

2010

New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.

Particle physicsProtonMesonelastic electron scattering13.40.Gp 14.20.Dh 25.30.BfHadronGeneral Physics and AstronomyFOS: Physical sciencesElementary particle[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicselastic electron scattering; proton electromagnetic form factors010308 nuclear & particles physicsForm factor (quantum field theory)Charge (physics)NATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.Crystallographyproton electromagnetic form factorsHigh Energy Physics::ExperimentNucleonDimensionless quantity
researchProduct

New Insight in the $Q^2$-Dependence of Proton Generalized Polarizabilities

2019

Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$, at the Mainz Microtron. Fits performed using either the low-energy theorem or dispersion relations allowed the extraction of the structure functions $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$, as well as the electric and magnetic generalized polarizabilities $\alpha_{E1}(Q^2)$ and $\beta_{M1}(Q^2)$. These new results show a smooth and rapid fall-off of $\alpha_{E1}(Q^2)$, in contrast to previous measurements at $Q^2$ = 0.33 GeV$^2$, and provide for the first time a precise mapping of $\beta_{M1}(Q^2)$ in the low-$Q^2$ region.

PhysicsProtonCompton scatteringFOS: Physical sciencesGeneral Physics and Astronomy25.30.Dh[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.Nuclear physics13.60.FzVirtual Compton Scattering VCS Proton Polarizability MAMI0103 physical sciences14.20.DhNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Physics
researchProduct

Comparison of ultracold neutron sources for fundamental physics measurements

2016

Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.

Physics - Instrumentation and DetectorsPhysics beyond the Standard ModelFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physics25.40Fq0103 physical sciencesCP: violationNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsn: densityn: electric moment010308 nuclear & particles physics29.25.Dzn: particle sourceInstrumentation and Detectors (physics.ins-det)31.30.jn28.20.Pr3. Good healthFundamental physicsMoment (physics)14.20.DhUltracold neutronsNeutron sourceBeam (structure)
researchProduct

Deeply virtual compton scattering off the neutron.

2007

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

QuarkPhysicsParticle physicsPhoton010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyNuclear TheoryCompton scatteringFOS: Physical sciencesGeneral Physics and AstronomyVirtual particleParton[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsIsospin0103 physical sciences25.30.-c 13.60.Fz 13.85.Hd 14.20.DhHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear ExperimentPhysical review letters
researchProduct