Search results for "14.20.Dh"
showing 5 items of 5 documents
The effective cross section for double parton scattering within a holographic AdS/QCD approach
2017
A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.
High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
2010
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.
New Insight in the $Q^2$-Dependence of Proton Generalized Polarizabilities
2019
Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$, at the Mainz Microtron. Fits performed using either the low-energy theorem or dispersion relations allowed the extraction of the structure functions $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$, as well as the electric and magnetic generalized polarizabilities $\alpha_{E1}(Q^2)$ and $\beta_{M1}(Q^2)$. These new results show a smooth and rapid fall-off of $\alpha_{E1}(Q^2)$, in contrast to previous measurements at $Q^2$ = 0.33 GeV$^2$, and provide for the first time a precise mapping of $\beta_{M1}(Q^2)$ in the low-$Q^2$ region.
Comparison of ultracold neutron sources for fundamental physics measurements
2016
Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.
Deeply virtual compton scattering off the neutron.
2007
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.