Search results for "14D05"
showing 4 items of 4 documents
Principal Poincar\'e Pontryagin Function associated to some families of Morse real polynomials
2014
It is known that the Principal Poincar\'e Pontryagin Function is generically an Abelian integral. We give a sufficient condition on monodromy to ensure that it is an Abelian integral also in non generic cases. In non generic cases it is an iterated integral. Uribe [17, 18] gives in a special case a precise description of the Principal Poincar\'e Pontryagin Function, an iterated integral of length at most 2, involving logarithmic functions with only one ramification at a point at infinity. We extend this result to some non isodromic families of real Morse polynomials.
An Arakelov inequality in characteristic p and upper bound of p-rank zero locus
2008
In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.
Complex multiplication, Griffiths-Yukawa couplings, and rigidity for families of hypersurfaces
2003
Let M(d,n) be the moduli stack of hypersurfaces of degree d > n in the complex projective n-space, and let M(d,n;1) be the sub-stack, parameterizing hypersurfaces obtained as a d fold cyclic covering of the projective n-1 space, ramified over a hypersurface of degree d. Iterating this construction, one obtains M(d,n;r). We show that M(d,n;1) is rigid in M(d,n), although the Griffiths-Yukawa coupling degenerates for d<2n. On the other hand, for all d>n the sub-stack M(d,n;2) deforms. We calculate the exact length of the Griffiths-Yukawa coupling over M(d,n;r), and we construct a 4-dimensional family of quintic hypersurfaces, and a dense set of points in the base, where the fibres ha…
Redundant Picard–Fuchs System for Abelian Integrals
2001
We derive an explicit system of Picard-Fuchs differential equations satisfied by Abelian integrals of monomial forms and majorize its coefficients. A peculiar feature of this construction is that the system admitting such explicit majorants, appears only in dimension approximately two times greater than the standard Picard-Fuchs system. The result is used to obtain a partial solution to the tangential Hilbert 16th problem. We establish upper bounds for the number of zeros of arbitrary Abelian integrals on a positive distance from the critical locus. Under the additional assumption that the critical values of the Hamiltonian are distant from each other (after a proper normalization), we were…