Search results for "2020"
showing 10 items of 4977 documents
Resistive communications based on neuristors
2017
Memristors are passive elements that allow us to store information using a single element per bit. However, this is not the only utility of the memristor. Considering the physical chemical structure of the element used, the memristor can function at the same time as memory and as a communication unit. This paper presents a new approach to the use of the memristor and develops the concept of resistive communication.
Partial discharges at different voltage waveshapes: Comparison between two different acquisition systems
2018
In modern HV apparatuses the wide use of electronic converters, increase the stress on the involved insulation systems and thus affect the reliability of the whole power grid. Additionally, such non-sinusoidal voltage shapes contain high gradient flanks that create problems in the detection of partial discharge (PD) activity. The aim of this paper is to discuss the methodology on how to suitably approach PD detection in insulation systems exposed to various voltage waveshapes in general by comparing two different measuring systems. The first one, equipped with a resonant PD decoupler, designed specifically for detection at typical power electronic waveshapes and the other one, based on an a…
Evolution of application-specific cache mappings
2020
Reconfigurable caches offer an intriguing opportunity to tailor cache behavior to applications for better run-times and energy consumptions. While one may adapt structural cache parameters such as cache and block sizes, we adapt the memory-address-to-cache-index mapping function to the needs of an application. Using a LEON3 embedded multi-core processor with reconfigurable cache mappings, a metaheuristic search procedure, and MiBench applications, we show in this work how to accurately compare non-deterministic performances of applications and how to use this information to implement an optimization procedure that evolves application-specific cache mappings for the LEON3 multi-core processo…
Multi-application Based Fault-Tolerant Network-on-Chip Design for Mesh Topology Using Reconfigurable Architecture
2019
In this paper, we propose a two-step fault-tolerant approach to address the faults occurred in cores. In the first stage, a Particle Swarm Optimization (PSO) based approach has been proposed for the fault-tolerant mapping of multiple applications on to the mesh based reconfigurable architecture by introducing spare cores and a heuristic has been proposed for the reconfiguration in the second stage. The proposed approach has been experimented by taking several benchmark applications into consideration. Communication cost comparisons have been carried out by taking the failed cores as user input and the experimental results show that our approach could get improvements in terms of communicati…
Space charge behavior of different insulating materials employed in AC and DC cable systems
2017
In this work, the space charge accumulation in three different XLPE based material has been carried out by using the PEA (Pulsed Electro-Acoustic) method. The specimens provided by a cables industry have been subjected to the same DC stress during polarization time at environment temperature. Afterwards, the high voltage generator has been turned off and the amount residual charge has been evaluated. The space charge profiles during polarization and depolarization have been carried out and compared. Finally, the distribution of electric field within the samples has been reported. In particular, the maximum distortion of electric field has been calculated by taking into account the distribut…
C-switches: Increasing switch radix with current integration scale
2011
In large switch-based interconnection networks, increasing the switch radix results in a decrease in the total number of network components, and consequently the overall cost of the network can be significantly reduced. Moreover, high-radix switches are an attractive option to improve the network performance in terms of latency, since hop count is also reduced. However, there are some problems related to the integration scale to design such single-chip switches. In this paper we discuss key issues and evaluate an interesting alternative for building high-radix switches going beyond the integration scale bounds. The idea basically consists in combining several current smaller single-chip swi…
Space charge accumulation in undersea HVDC cables as function of heat exchange conditions at the boundaries – water-air interface
2020
Transmission lines with undersea HVDC cables are an interesting technological solution for the supply of electrical energy to islands. The accumulation of space charge inside the dielectric layer of a HVDC cable is one of the most important element to consider in its design and during operation. The formation of space charge is due to various factors including the high dependence on the temperature of the electrical conductivity of the insulation and the establishment of a thermal gradient under load conditions. This research is focused on the space charge accumulation phenomenon around a section of a HVDC cable half dipped in water and half in air. Due to the high difference in thermal con…
Electromagnetic and Thermal Modelling for Calculating Ageing Rate of Distribution Transformers
2018
Prediction of the lifetime for transformers is very important for maintenance and asset management. Finite element analysis was performed on a 5 MVA distribution transformers with aluminium foil-type windings and voltage rating 6600 V/23000 V. Electromagnetic modelling is implemented on the full three-phase transformer to calculate distributed losses, taking the skin effect into account. To reduce the computational burden, the distributed losses in one phase are used to analyse temperature rise in one phase of the transformer. The temperature rise results were used to determine the ageing rate of the transformer. Further, the influence of ambient temperature and cooling on the temperature r…
Contributed Review: Review of thermal methods for space charge measurement.
2016
The space charge accumulation phenomenon has garnered great interest over the last two decades because of the increased use of direct current in high voltage electrical systems. In this context, a significant relevance has been achieved by the thermal methods, used for solid dielectrics. This paper presents a review of this non-destructive measurement system used for the measurement of space charge. The thermal pulse method, the thermal step method, and the laser intensity modulation method are described. For each configuration, the principle of operation, the thicknesses analyzed, and the spatial resolution are described, reporting also the main related applications
Temperature Dependent Suns-V<inf>oc</inf> of Multicrystalline Silicon Solar Cells from Different Ingot Positions
2018
This paper presents temperature dependent Suns- Voc measurements on multicrystalline silicon cells originating from different ingot positions. The effective lifetime is found to increase for all cells when the temperature is increased from 25°C to 6°C. However, cells from the top of the ingot show a considerably larger increas 40–50% for illumination conditions of 0.1-1 Sun, compared to an increase of 20-30% observed for cells from the bottom. The decrease in Voc with increasing temperature is found to be lower for cells from the top of the ingot compared to cells from the bottom. The temperature coefficient of the Voc is found to vary 5% along the ingot at 1 Sun, highlighting the influence…