Search results for "24"

showing 10 items of 3907 documents

Does plant diversity influence phosphorus cycling in experimental grasslands?

2011

Plant diversity was shown to influence the N cycle, but plant diversity effects on other nutrients remain unclear. We tested whether plant species richness or the presence/absence of particular functional plant groups influences P partitioning among differently extractable pools in soil, P concentrations in soil solution, and exploitation of P resources (i.e. the proportion of total bioavailable P in plants and soil that was stored in aboveground biomass) by the plant community in a 5-year biodiversity experiment in grassland.The experimental grassland site established in 2002 had 82 plots with different combinations of numbers of species (1, 2, 4, 8, 16, 60) and functional groups (grasses,…

0106 biological sciencesBiodiversitySoil ScienceBiology010603 evolutionary biology01 natural sciencescomplex mixturesSustainability ScienceGrasslandPlant P uptakeP in soil solutionNutrientLeaching (agriculture)/dk/atira/pure/core/keywords/biologyBiology2. Zero hungerBiomass (ecology)geographygeography.geographical_feature_categorySoil organic matter/dk/atira/pure/core/keywords/559922418food and beveragesPlant communityPhosphorus04 agricultural and veterinary sciences15. Life on landP fractions in soilAgronomyPlant diversityEcosystems Research040103 agronomy & agriculture0401 agriculture forestry and fisheriesSpecies richness/dk/atira/pure/core/keywords/nachhaltigkeitswissenschaft
researchProduct

sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots

2021

Datos disponibles en https://github.com/fmsabatini/sPlotOpen_Code

0106 biological sciencesBiomeBos- en LandschapsecologieBiodiversityDIVERSITYFOREST VEGETATION01 natural sciences//purl.org/becyt/ford/1 [https]http://aims.fao.org/aos/agrovoc/c_915Abundance (ecology)big dataVegetation typePHYTOSOCIOLOGICAL DATABASEparcelleForest and Landscape Ecologyfunctional traitsvascular plantsbig data; biodiversity; biogeography; database; functional traits; macroecology; vascular plants; vegetation plotsbig data ; biodiversity ; biogeography ; database ; functional traits ; macroecology ; vascular plants ; vegetation plotsMacroecologyhttp://aims.fao.org/aos/agrovoc/c_3860databasebiodiversity[SDV.EE]Life Sciences [q-bio]/Ecology environmentGlobal and Planetary ChangeEcologyEcologyhttp://aims.fao.org/aos/agrovoc/c_33949vascular plantVegetationF70 - Taxonomie végétale et phytogéographiePE&RCVegetation plotGeography580: Pflanzen (Botanik)Ecosystems Researchhttp://aims.fao.org/aos/agrovoc/c_25409Diffusion de l'informationmacroecologyPlantenecologie en NatuurbeheerVegetatie Bos- en LandschapsecologieBiodiversitéARCHIVECommunauté végétalehttp://aims.fao.org/aos/agrovoc/c_24420Evolutionhttp://aims.fao.org/aos/agrovoc/c_fdfbb37f[SDE.MCG]Environmental Sciences/Global ChangesBiogéographieGRASSLAND VEGETATIONPlant Ecology and Nature Conservation[SDV.BID]Life Sciences [q-bio]/Biodiversity010603 evolutionary biologyBehavior and SystematicsCouverture végétale577: ÖkologiePLANThttp://aims.fao.org/aos/agrovoc/c_8176//purl.org/becyt/ford/1.6 [https]/dk/atira/pure/core/keywords/biologyfunctional traitBiologyEcology Evolution Behavior and SystematicsVegetatiebiogeographyVegetation010604 marine biology & hydrobiology/dk/atira/pure/core/keywords/559922418Impact sur l'environnementDRY GRASSLANDSPlant community15. Life on landVégétationWETLAND VEGETATIONhttp://aims.fao.org/aos/agrovoc/c_45b5a34avegetation plotsEarth and Environmental SciencesUNIVERSITYPhysical geographyVegetation Forest and Landscape Ecology[SDE.BE]Environmental Sciences/Biodiversity and Ecologydonnées ouverteshttp://aims.fao.org/aos/agrovoc/c_32514Global and Planetary Change
researchProduct

Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory

2018

International audience; Clumping index (CI) is a measure of foliage aggregation relative to a random distribution of leaves in space. The CI can help with estimating fractions of sunlit and shaded leaves for a given leaf area index (LAI) value. Both the CI and LAI can be obtained from global Earth Observation data from sensors such as the Moderate Resolution Imaging Spectrometer (MODIS). Here, the synergy between a MODIS-based CI and a MODIS LAI product is examined using the theory of spectral invariants, also referred to as photon recollision probability ('p-theory'), along with raw LAI-2000/2200 Plant Canopy Analyzer data from 75 sites distributed across a range of plant functional types.…

0106 biological sciencesCanopyEarth observationPhoton010504 meteorology & atmospheric sciencesF40 - Écologie végétalehttp://aims.fao.org/aos/agrovoc/c_1920Soil Science01 natural sciencesMeasure (mathematics)http://aims.fao.org/aos/agrovoc/c_7701Multi-angle remote sensingProbability theoryhttp://aims.fao.org/aos/agrovoc/c_718Foliage clumping indexRange (statistics)http://aims.fao.org/aos/agrovoc/c_3081[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyComputers in Earth SciencesLeaf area indexhttp://aims.fao.org/aos/agrovoc/c_4039http://aims.fao.org/aos/agrovoc/c_4116Photon recollision probabilityhttp://aims.fao.org/aos/agrovoc/c_10672http://aims.fao.org/aos/agrovoc/c_32450105 earth and related environmental sciencesMathematicsRemote sensinghttp://aims.fao.org/aos/agrovoc/c_8114GeologyVegetationhttp://aims.fao.org/aos/agrovoc/c_5234http://aims.fao.org/aos/agrovoc/c_7558Leaf area indexhttp://aims.fao.org/aos/agrovoc/c_7273http://aims.fao.org/aos/agrovoc/c_1236http://aims.fao.org/aos/agrovoc/c_1556U30 - Méthodes de recherchehttp://aims.fao.org/aos/agrovoc/c_4026010606 plant biology & botanyhttp://aims.fao.org/aos/agrovoc/c_6124
researchProduct

Improved Extraction Efficiency of Antioxidant Bioactive Compounds from Tetraselmis chuii and Phaedoactylum tricornutum Using Pulsed Electric Fields

2020

Pulsed electric fields (PEF) is a promising technology that allows the selective extraction of high-added value compounds by electroporation. Thus, PEF provides numerous opportunities for the energy efficient isolation of valuable microalgal bioactive substances (i.e., pigments and polyphenols). The efficiency of PEF-assisted extraction combined with aqueous or dimethyl sulfoxide (DMSO) solvents in recovering pigments and polyphenols from microalgae Tetraselmis chuii (T. chuii) and Phaeodactylum tricornutum (P. tricornutum) was evaluated. Two PEF treatments were applied: (1 kV/cm/400 pulses, 3 kV/cm/45 pulses), with a specific energy input of 100 kJ/kg. The total antioxidant capacity (TAC) …

0106 biological sciencesChlorophyll bAntioxidantmedicine.medical_treatmentPharmaceutical ScienceTetraselmis chuii01 natural sciencesPhaeodactylum tricornutumArticleAntioxidantsAnalytical Chemistrylcsh:QD241-441chemistry.chemical_compound0404 agricultural biotechnologylcsh:Organic chemistryChlorophyta010608 biotechnologyDrug DiscoverymedicineMicroalgaePhaeodactylum tricornutum<i>Phaeodactylum tricornutum</i>Physical and Theoretical ChemistryTetraselmis<i>Tetraselmis chuii</i>Carotenoidchemistry.chemical_classificationDiatomsChromatographybiologyChemistryDimethyl sulfoxideOrganic ChemistryExtraction (chemistry)Polyphenols04 agricultural and veterinary sciencesbiology.organism_classification040401 food science6. Clean waterElectroporationpulsed electric fieldsChemistry (miscellaneous)PolyphenolextractionMolecular Medicineantioxidant bioactive compoundsMolecules
researchProduct

Influence of the Storage of Cistus ladanifer L. Bales from Mechanised Harvesting on the Essential Oil Yield and Qualitative Composition

2021

Cistus ladanifer is a Mediterranean native plant from which valuable products, such as essential oil, are obtained. Manual harvesting of the plants in wild shrublands is usual during short periods of time. Their mechanised harvesting could increase the volume of harvested plants and prevent fires, further storage of the plants collected being necessary. The objective of this work is to study the influence of the storage period of mechanically harvested bales on the essential oil yield and qualitative composition. The harvesting trials were carried out with an adapted commercial harvester baler and the storage of the bales was performed indoors during 1–7 days, 15–30 days and 100–120 days. A…

0106 biological sciencesChromatography Gasdistillation020209 energyPharmaceutical ScienceBiomassOrganic chemistry02 engineering and technology01 natural sciencesCistus ladaniferGas Chromatography-Mass SpectrometryArticleessential oilAnalytical Chemistrylaw.inventionSteam distillationmechanised harvestingQD241-441<i>Cistus ladanifer</i> L.lawDrug Discovery0202 electrical engineering electronic engineering information engineeringOils VolatilePhysical and Theoretical ChemistryDistillationEssential oilbiologySuperheated steamCistusbiology.organism_classificationrockroseHorticulturePilot plantChemistry (miscellaneous)pilot plantMonoterpenesMolecular MedicineEnvironmental scienceComposition (visual arts)Cistus ladanifer L.010606 plant biology & botanyMolecules
researchProduct

Accounting for preferential sampling in species distribution models

2019

D. C., A. L. Q. and F. M. would like to thank the Ministerio de Educación y Ciencia (Spain) for financial support (jointly financed by the European Regional Development Fund) via Research Grants MTM2013‐42323‐P and MTM2016‐77501‐P, and ACOMP/2015/202 from Generalitat Valenciana (Spain). Species distribution models (SDMs) are now being widely used in ecology for management and conservation purposes across terrestrial, freshwater, and marine realms. The increasing interest in SDMs has drawn the attention of ecologists to spatial models and, in particular, to geostatistical models, which are used to associate observations of species occurrence or abundance with environmental covariates in a fi…

0106 biological sciencesComputer scienceQH301 BiologySpecies distributionPoint processesStochastic partial differential equation01 natural scienceshttp://aims.fao.org/aos/agrovoc/c_6774EspèceAbundance (ecology)StatisticsPesqueríasQAOriginal Researchhttp://aims.fao.org/aos/agrovoc/c_241990303 health sciencesEcologyU10 - Informatique mathématiques et statistiquesSampling (statistics)Integrated nested Laplace approximationstochastic partial differential equationVariable (computer science)symbolsÉchantillonnageSpecies Distribution Models (SDMs)Modèle mathématiqueBayesian probabilityNDASDistribution des populations010603 evolutionary biologyQH30103 medical and health sciencessymbols.namesakeCovariateQA MathematicsSDG 14 - Life Below WaterCentro Oceanográfico de Murciaspecies distribution modelsRelative species abundanceEcology Evolution Behavior and Systematicspoint processes030304 developmental biologyNature and Landscape Conservationhttp://aims.fao.org/aos/agrovoc/c_6113http://aims.fao.org/aos/agrovoc/c_7280Markov chain Monte Carlointegrated nested Laplace approximationU30 - Méthodes de rechercheBayesian modelling
researchProduct

Phytotoxic Effects of Commercial Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris Essential Oils on Weeds, Crops, and Invasive Spe…

2019

Background: essential oils are well known for their pharmacological effectiveness as well as their repellent, insecticide, and herbicide activities. The emergence of resistant weeds, due to the overuse of synthetic herbicides, makes it necessary to find natural alternatives for weed control. The aim of this study was to evaluate the phytotoxic effects of Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris, three common commercial essential oils, on weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli), food crops (tomato and cucumber), and the invasive species Nicotiana glauca. Methods: to determine herbicidal effects, essential oils were tested at diffe…

0106 biological sciencesE. citriodoraPlant WeedsPharmaceutical Sciencephytotoxicity<i>E. citriodora</i>01 natural sciencesAnalytical Chemistrylaw.inventionlawDrug DiscoveryRadicleGC–MSLavandula angustifoliaEucalyptusbiologyfood and beveragesPinus sylvestris<i>L. angustifolia</i>HorticultureLavandulaChemistry (miscellaneous)GerminationEucalyptus citriodoraMolecular MedicineCrops AgriculturalWeed ControlGerminationL. angustifoliaArticleGas Chromatography-Mass Spectrometrylcsh:QD241-441lcsh:Organic chemistryP. sylvestrisOils VolatilePhysical and Theoretical Chemistryessential oilsEssential oil<i>P. sylvestris</i>HerbicidesfungiOrganic ChemistryLolium multiflorumbiology.organism_classification0104 chemical sciences010404 medicinal & biomolecular chemistrySeedlingsSeedlingIntroduced SpeciesWeed010606 plant biology & botanyMolecules
researchProduct

Applicability of a single‐use bioreactor compared to a glass bioreactor for the fermentation of filamentous fungi and evaluation of the reproducibili…

2021

Abstract The implementation of single‐use technologies offers several major advantages, e.g. prevention of cross‐contamination, especially when spore‐forming microorganisms are present. This study investigated the application of a single‐use bioreactor in batch fermentation of filamentous fungus Penicillium sp. (IBWF 040‐09) from the Institute of Biotechnology and Drug Research (IBWF), which is capable of intracellular production of a protease inhibitor against parasitic proteases as a secondary metabolite. Several modifications to the SU bioreactor were suggested in this study to allow the fermentation in which the fungus forms pellets. Simultaneously, fermentations in conventional glass b…

0106 biological sciencesEnvironmental Engineeringsingle‐use bioreactorMicroorganismPenicillium spBioengineeringSecondary metabolite01 natural sciencesprotease inhibitor03 medical and health sciences010608 biotechnologyPelletmedicineBioreactorFood sciencefermentationResearch Articles030304 developmental biology0303 health sciencesbiologyChemistrytechnology industry and agricultureSubstrate (chemistry)biology.organism_classificationequipment and suppliespelletsSingle-use bioreactorPenicilliumFermentationTP248.13-248.65Biotechnologymedicine.drugResearch ArticleEngineering in Life Sciences
researchProduct

Species disparity response to mutagenesis of marine yeasts for the potential production of biodiesel.

2019

Abstract Background Among the third-generation biodiesel feed stock, oleaginous marine yeasts are the least studied microorganisms for such purpose. Results Wild strains yeasts were isolated from various Tunisian marine sources including fish waste (Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015, Trichosporon asahii TaTun15 and Yarrowia lipolytica YlTun15) and seawater (Rhodotorula mucilaginosa RmTun15). Following incubation with ethyl methanesulfonate (EMS: 75 mM) for various periods of time (T15, T30, T45, T60 min), the cell viability of these strains responded differentially according to yeast species. For instance, mutated CtTun15 did not survive after 30 min of EMS treatment; …

0106 biological sciencesEthyl methanesulfonatelcsh:BiotechnologyMicroorganismManagement Monitoring Policy and Law01 natural sciencesApplied Microbiology and Biotechnologylcsh:Fuel03 medical and health scienceschemistry.chemical_compoundEthyl methanesulfonatelcsh:TP315-360lcsh:TP248.13-248.65010608 biotechnologyDebaryomyces hanseniiFood scienceBiomassIncubationMutagenesis optimization030304 developmental biologychemistry.chemical_classification0303 health sciencesOleaginous yeastbiologyRenewable Energy Sustainability and the EnvironmentFatty acidCorrectionYarrowiaLipidbiology.organism_classificationFatty acidYeastddc:General EnergychemistryBiodiesel productionBiodieselBiotechnologyBiotechnology for biofuels
researchProduct

MAB2.0 project: Integrating algae production into wastewater treatment

2018

Abstract Different species of microalgae are highly efficient in removing nutrients from wastewater streams and are able to grow using flue gas as a CO2 source. These features indicate that application of microalgae has a promising outlook in wastewater treatment. However, practical aspects and process of integration of algae cultivation into an existing wastewater treatment line have not been investigated. The Climate-KIC co-funded Microalgae Biorefinery 2.0 project developed and demonstrated this integration process through a case study. The purpose of this paper is to introduce this process by phases and protocols, as well as report on the challenges and bottlenecks identified in the cas…

0106 biological sciencesFlue gasBio Process EngineeringProcess (engineering)[SDV]Life Sciences [q-bio]Biomedical Engineeringwastewater treatment;microalgae;bioresource010501 environmental sciencesRaw material01 natural sciencesBiotecnologiaLead (geology)bioresourceAlgues010608 biotechnologyGeneticsProduction (economics)Life ScienceMolecular Biologyeaux usées0105 earth and related environmental sciencesmicroalgaeBiorefinery6. Clean watertraitement biologiquewastewater treatmentWastewater13. Climate action[SDE]Environmental SciencesMolecular MedicineSewage treatmentBBP Biorefinery & Sustainable Value ChainsBiochemical engineeringbioressourceAigües residuals Depuració Tractament biològicculture d'algueTP248.13-248.65Food ScienceBiotechnology
researchProduct