Search results for "28A20"

showing 2 items of 2 documents

Space-filling vs. Luzin's condition (N)

2013

Let us assume that we are given two metric spaces, where the Hausdorff dimension of the first space is strictly smaller than the one of the second space. Suppose further that the first space has sigma-finite measure with respect to the Hausdorff measure of the corresponding dimension. We show for quite general metric spaces that for any measurable surjection from the first onto the second space, there is a set of measure zero that is mapped to a set of positive measure (both measures are the Hausdorff measures corresponding to the Hausdorff dimension of the first space). We also study more general situations where the measures on the two metric spaces are not necessarily the same and not ne…

28A75 (Primary) 54C10 26B35 28A12 28A20 (Secondary)General Mathematicsta111Hausdorff spaceMathematics::General TopologySpace (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisSurjective functionCombinatoricsSet (abstract data type)Metric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Measures with predetermined regularity and inhomogeneous self-similar sets

2016

We show that if $X$ is a uniformly perfect complete metric space satisfying the finite doubling property, then there exists a fully supported measure with lower regularity dimension as close to the lower dimension of $X$ as we wish. Furthermore, we show that, under the condensation open set condition, the lower dimension of an inhomogeneous self-similar set $E_C$ coincides with the lower dimension of the condensation set $C$, while the Assouad dimension of $E_C$ is the maximum of the Assouad dimensions of the corresponding self-similar set $E$ and the condensation set $C$. If the Assouad dimension of $C$ is strictly smaller than the Assouad dimension of $E$, then the upper regularity dimens…

Pure mathematicsAssouad dimensionGeneral MathematicsOpen set01 natural sciencesMeasure (mathematics)Complete metric space54E35010305 fluids & plasmasSet (abstract data type)Dimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematicsinhomogeneous self-similar setMathematics::Metric Geometry28A200101 mathematicsMathematics010102 general mathematicsta111doubling metric space54F45lower dimensionMathematics - Classical Analysis and ODEs28A75uniform perfectness
researchProduct