Search results for "28C15"

showing 2 items of 2 documents

Existence of doubling measures via generalised nested cubes

2012

Working on doubling metric spaces, we construct generalised dyadic cubes adapting ultrametric structure. If the space is complete, then the existence of such cubes and the mass distribution principle lead into a simple proof for the existence of doubling measures. As an application, we show that for each $\epsilon>0$ there is a doubling measure having full measure on a set of packing dimension at most $\epsilon$.

Applied MathematicsGeneral MathematicsDyadic cubesStructure (category theory)Space (mathematics)Measure (mathematics)CombinatoricsMetric spacePacking dimension28C15 (Primary) 54E50 (Secondary)Mathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicsUltrametric spaceMathematicsProceedings of the American Mathematical Society
researchProduct

On Pietsch measures for summing operators and dominated polynomials

2012

We relate the injectivity of the canonical map from $C(B_{E'})$ to $L_p(\mu)$, where $\mu$ is a regular Borel probability measure on the closed unit ball $B_{E'}$ of the dual $E'$ of a Banach space $E$ endowed with the weak* topology, to the existence of injective $p$-summing linear operators/$p$-dominated homogeneous polynomials defined on $E$ having $\mu$ as a Pietsch measure. As an application we fill the gap in the proofs of some results of concerning Pietsch-type factorization of dominated polynomials.

Unit sphereDiscrete mathematics28C15 46G25 47B10 47L22Mathematics::Functional AnalysisPure mathematicsAlgebra and Number TheoryDiscrete orthogonal polynomialsBanach spaceMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisClassical orthogonal polynomialsFactorizationOrthogonal polynomialsFOS: MathematicsCanonical mapMathematicsLinear and Multilinear Algebra
researchProduct