Search results for "30c65"

showing 10 items of 34 documents

Harmonic morphisms in nonlinear potential theory

1992

This article concerns the following problem: given a family of partial differential operators with similar structure and given a continuous mapping f from an open set Ω in Rn into Rn, then when does f pull back the solutions of one equation in the family to solutions of another equation in that family? This problem is typical in the theory of differential equations when one wants to use a coordinate change to study solutions in a different environment.

010308 nuclear & particles physicsGeneral Mathematics010102 general mathematicsHarmonic (mathematics)01 natural sciencesPotential theory30C6535J60AlgebraNonlinear systemMorphism0103 physical sciences0101 mathematicsMathematicsNagoya Mathematical Journal
researchProduct

Duality of moduli in regular toroidal metric spaces

2020

We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala [12] on the corresponding duality in condensers. peerReviewed

30L10 30C65 28A75 51F99Pure mathematicsmetric spacesToroidDuality (optimization)torusMetric Geometry (math.MG)TorusArticlesmetriset avaruudetModulifunktioteoriaMetric spaceContinuationMathematics - Metric GeometrymodulusFOS: MathematicsdualitymittateoriageometriaMathematics::Symplectic GeometryMathematicsAnnales Fennici Mathematici
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Differentiability in the Sobolev space W1,n-1

2014

Let Ω ⊂ Rn be a domain, n ≥ 2. We show that a continuous, open and discrete mapping f ∈ W1,n−1 loc (Ω, Rn ) with integrable inner distortion is differentiable almost everywhere on Ω. As a corollary we get that the branch set of such a mapping has measure zero. peerReviewed

46E3528A526B1030C65
researchProduct

Uniformization with infinitesimally metric measures

2019

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

Characterization (mathematics)Space (mathematics)conformal modulus01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsComplex Variables (math.CV)MathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsquasiconformal mappingMetric Geometry (math.MG)metriset avaruudetmetric doubling measureMetric spaceDifferential geometryUniformization theoremMetric (mathematics)quasisymmetric mapping30L10 (Primary) 30C65 28A75 51F99 (Secondary)mittateoria010307 mathematical physicsGeometry and TopologyUniformization (set theory)
researchProduct

Generalized John disks

2014

Abstract We establish the basic properties of the class of generalized simply connected John domains.

Class (set theory)conformal mappingGeneral Mathematics30c65Conformal mapTopology30c62AlgebraNumber theorySimply connected spacehyperbolic geodesicQA1-939inner uniform domainjohn domainAlgebra over a fieldGeometry and topologyMathematicsMathematicsOpen Mathematics
researchProduct

A Newman property for BLD-mappings

2019

We define a Newman property for BLD-mappings and prove that for a BLD-mapping between generalized manifolds equipped with complete path-metrics, this property is equivalent to the branch set being porous when the codomain is LLC. peerReviewed

Discrete mathematicsProperty (philosophy)BLD-mappings010102 general mathematicsMetric Geometry (math.MG)30L10 30C65 57M1216. Peace & justice01 natural sciences010101 applied mathematicsSet (abstract data type)Mathematics - Metric GeometryPath (graph theory)FOS: MathematicsGeometry and Topologygeometria0101 mathematicsMathematics
researchProduct

Sharpness of Rickman’s Picard theorem in all dimensions

2015

We show that given \({n \geqslant 3}\), \({q \geqslant 1}\), and a finite set \({\{y_1, \ldots, y_q \}}\) in \({\mathbb{R}^n}\) there exists a quasiregular mapping \({\mathbb{R}^n\to \mathbb{R}^n}\) omitting exactly points \({y_1, \ldots, y_q}\).

Distortion (mathematics)Discrete mathematicsRickman’s Picard theoremGeneral Mathematicsquasiregular mappingsFinite setPicard theoremMathematics30C65
researchProduct

Mappings of finite distortion: Sharp Orlicz-conditions

2003

We establish continuity, openness and discreteness, and the condition $(N)$ for mappings of finite distortion under minimal integrability assumptions on the distortion.

General MathematicsDistortionMathematical analysisData_MISCELLANEOUSComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONData_CODINGANDINFORMATIONTHEORYfinite distortionTopologycontinuityopenness and discretenessMathematicsOrlicz conditions30C65
researchProduct

A note on mappings of finite distortion: The sharp modulus of continuity

2005

General MathematicsDistortionMathematical analysisTopologyModulus of continuity30C65MathematicsMichigan Mathematical Journal
researchProduct