Search results for "31c45"

showing 10 items of 13 documents

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Lower semicontinuity of weak supersolutions to the porous medium equation

2013

Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

Degenerate diffusion35K55 31C45Applied MathematicsGeneral MathematicsMathematical analysista111Mathematics::Analysis of PDEscomparison principlelower semicontinuitysupersolutionsMathematics - Analysis of PDEsporous medium equationFOS: MathematicsPorous mediumdegenerate diffusionSign (mathematics)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

p-Laplacian type equations involving measures

2003

This is a survey on problems involving equations $-\operatorname{div}{\Cal A}(x,\nabla u)=\mu$, where $\mu$ is a Radon measure and ${\Cal A}:\bold {R}^n\times\bold R^n\to \bold R^n$ verifies Leray-Lions type conditions. We shall discuss a potential theoretic approach when the measure is nonnegative. Existence and uniqueness, and different concepts of solutions are discussed for general signed measures.

Mathematics - Analysis of PDEsFOS: Mathematics35J60 31C45Analysis of PDEs (math.AP)
researchProduct

Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions

2023

In a complete metric space equipped with a doubling measure supporting a $p$-Poincar\'e inequality, we prove sharp growth and integrability results for $p$-harmonic Green functions and their minimal $p$-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general $p$-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted $\mathbf{R}^n$ and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for $p$-harmonic Green functions…

Mathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsPrimary: 31C45 Secondary: 30L99 31C12 31C15 31E05 35J08 35J92 46E36 49Q20AnalysisAnalysis of PDEs (math.AP)Journal d'Analyse Mathématique
researchProduct

Existence and almost uniqueness for p -harmonic Green functions on bounded domains in metric spaces

2020

We study ($p$-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted $\mathbf{R}^n$, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for $p$-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various c…

Pure mathematicsCapacitary potential; Doubling measure; Metric space; p-harmonic Green function; Poincar? inequality; Singular function31C45 (Primary) 30L99 31C15 31E05 35J92 49Q20 (Secondary)Harmonic (mathematics)Mathematical Analysis01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Mathematics - Analysis of PDEscapacitary potentialMatematisk analysFOS: MathematicsUniqueness0101 mathematicsMathematicsComplement (set theory)p-harmonicApplied Mathematics010102 general mathematicsmetric spacemetriset avaruudet010101 applied mathematicsMetric spacePoincaré inequalityBounded functionMetric (mathematics)doubling measurepotentiaaliteoriasingular functiongreen functionAnalysisAnalysis of PDEs (math.AP)
researchProduct

Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian

2010

We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.

Pure mathematicsPrimary 35J92 Secondary 35D40 31C45 35B60Applied MathematicsMathematics::Analysis of PDEsDirichlet distributionPotential theoryNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsFOS: MathematicssymbolsLaplace operatorEquivalence (measure theory)Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

The annular decay property and capacity estimates for thin annuli

2016

We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted $\mathbf{R}^n$ and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar\'e inequality. In particular, if the measure has the $1$-annular decay property at $x_0$ and the metric space supports a pointwise $1$-Poincar\'e inequality at $x_0$, then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at $x_0$, which generalizes the known estimate for the usual variational capacity in unweighted $\mathbf{R}^n$. Most of our estimates are sharp, which we show by supplying several key counterexamples. We also character…

Pure mathematicsProperty (philosophy)General Mathematicsthin annulusPoincaré inequality01 natural sciencesMeasure (mathematics)Upper and lower boundssymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsPointwiseApplied Mathematics010102 general mathematicsmetric spaceMetric Geometry (math.MG)31E05 (Primary) 30L99 31C15 31C45 (Secondary)kapasiteettiSobolev spaceSobolev spaceNonlinear systemMetric spaceannular decay propertyPoincaré inequalitydoubling measuresymbolsupper gradient010307 mathematical physicsweighted RnAnalysis of PDEs (math.AP)Newtonian spacevariational capacity
researchProduct

Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces

2015

Submitted by Alexandre Almeida (jaralmeida@ua.pt) on 2015-11-12T11:41:07Z No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Approved for entry into archive by Bella Nolasco(bellanolasco@ua.pt) on 2015-11-17T12:18:41Z (GMT) No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Made available in DSpace on 2015-11-17T12:18:41Z (GMT). No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Previous issue date: 2015-04

Pure mathematicsWolff potentialScale (ratio)Weak Lebesgue spaceVariable exponentMathematics::Classical Analysis and ODEsLebesgue's number lemmaNon-standard growth conditionIntegrability of solutionssymbols.namesakeMathematics - Analysis of PDEsReal interpolationFOS: MathematicsLp spaceMathematicsLaplace's equationMathematics::Functional AnalysisVariable exponentIntegrability estimatesRiesz potentialApplied MathematicsMathematical analysisFunctional Analysis (math.FA)Mathematics - Functional AnalysissymbolsRiesz potential47H99 (Primary) 46B70 46E30 35J60 31C45 (Secondary)Analysis of PDEs (math.AP)
researchProduct

Admissibility versus Ap-Conditions on Regular Trees

2020

We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees. peerReviewed

QA299.6-433ap-conditionpoincaré inequalityAp-condition31c45funktioteoria30l99regular treePoincaré inequalitydoubling measure46e35potentiaaliteoriafunktionaalianalyysiAnalysis
researchProduct