Search results for "35B45"

showing 3 items of 3 documents

A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient

2019

Let $\Omega \subset \mathbb R^N$, $N \geq 2$, be a smooth bounded domain. We consider a boundary value problem of the form $$-\Delta u = c_{\lambda}(x) u + \mu(x) |\nabla u|^2 + h(x), \quad u \in H^1_0(\Omega)\cap L^{\infty}(\Omega)$$ where $c_{\lambda}$ depends on a parameter $\lambda \in \mathbb R$, the coefficients $c_{\lambda}$ and $h$ belong to $L^q(\Omega)$ with $q>N/2$ and $\mu \in L^{\infty}(\Omega)$. Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the gener…

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMultiplicity (mathematics)01 natural sciencesUpper and lower bounds010101 applied mathematicsMathematics - Analysis of PDEsBounded functionFOS: MathematicsA priori and a posteriori[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsComputingMilieux_MISCELLANEOUSAnalysis of PDEs (math.AP)35A23 35B45 35J25 35J92Harnack's inequalityMathematics
researchProduct

An optimal Poincaré-Wirtinger inequality in Gauss space

2013

International audience; Let $\Omega$ be a smooth, convex, unbounded domain of $\mathbb{R}^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge 1$. The result is sharp since equality sign is achieved when $\Omega$ is a $N$-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space $H^1(\Omega,d\gamma_N)$, where $\gamma_N$ is the $N$% -dimensional Gaussian measure.

Hermite operatorHermite polynomialsGeneral Mathematics010102 general mathematicsGaussMathematics::Spectral TheorySpace (mathematics)Gaussian measure01 natural sciencesOmega35B45; 35P15; 35J70CombinatoricsSobolev spaceSettore MAT/05 - Analisi Matematica0103 physical sciencesDomain (ring theory)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Neumann eigenvaluesharp bounds010307 mathematical physics0101 mathematicsSign (mathematics)MathematicsMathematical Research Letters
researchProduct

Anisotropic elliptic equations with gradient-dependent lower order terms and L^1 data

2023

<abstract><p>We prove the existence of a weak solution for a general class of Dirichlet anisotropic elliptic problems such as $ \mathcal Au+\Phi(x, u, \nabla u) = \mathfrak{B}u+f $ in $ \Omega $, where $ \Omega $ is a bounded open subset of $ \mathbb R^N $ and $ f\in L^1(\Omega) $ is arbitrary. The principal part is a divergence-form nonlinear anisotropic operator $ \mathcal A $, the prototype of which is $ \mathcal A u = -\sum_{j = 1}^N \partial_j(|\partial_j u|^{p_j-2}\partial_j u) $ with $ p_j > 1 $ for all $ 1\leq j\leq N $ and $ \sum_{j = 1}^N (1/p_j) > 1 $. As a novelty in this paper, our lower order terms involve a new class of operators $ \mathfrak B $ such…

Leray--Lions operatorMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaApplied MathematicsFOS: Mathematicssummable datapseudo-monotone operatorlower order term35J25 35B45 35J60Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)nonlinear anisotropic elliptic equation
researchProduct