Search results for "35D30"
showing 6 items of 6 documents
Equivalence of viscosity and weak solutions for a $p$-parabolic equation
2019
AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .
Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian
2018
We show that viscosity solutions to the normalized $p(x)$-Laplace equation coincide with distributional weak solutions to the strong $p(x)$-Laplace equation when $p$ is Lipschitz and $\inf p>1$. This yields $C^{1,\alpha}$ regularity for the viscosity solutions of the normalized $p(x)$-Laplace equation. As an additional application, we prove a Rad\'o-type removability theorem.
A weak comparison principle for solutions of very degenerate elliptic equations
2012
We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.
Calder\'on's problem for p-Laplace type equations
2016
We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…
On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid
2016
We study the existence of weak solution for unsteady fluid-structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.
On the convergence of fixed point iterations for the moving geometry in a fluid-structure interaction problem
2019
In this paper a fluid-structure interaction problem for the incompressible Newtonian fluid is studied. We prove the convergence of an iterative process with respect to the computational domain geometry. In our previous works on numerical approximation of similar problems we refer this approach as the global iterative method. This iterative approach can be understood as a linearization of the so-called geometric nonlinearity of the underlying model. The proof of the convergence is based on the Banach fixed point argument, where the contractivity of the corresponding mapping is shown due to the continuous dependence of the weak solution on the given domain deformation. This estimate is obtain…