Search results for "35D30"

showing 6 items of 6 documents

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian

2018

We show that viscosity solutions to the normalized $p(x)$-Laplace equation coincide with distributional weak solutions to the strong $p(x)$-Laplace equation when $p$ is Lipschitz and $\inf p>1$. This yields $C^{1,\alpha}$ regularity for the viscosity solutions of the normalized $p(x)$-Laplace equation. As an additional application, we prove a Rad\'o-type removability theorem.

osittaisdifferentiaaliyhtälöt35J60 35D40 35D30Pure mathematicsApplied Mathematics010102 general mathematicsLipschitz continuity01 natural sciences010101 applied mathematicsViscosityMathematics - Analysis of PDEspartial differential equationsFOS: Mathematics0101 mathematicsLaplace operatorEquivalence (measure theory)AnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

A weak comparison principle for solutions of very degenerate elliptic equations

2012

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.

Discrete mathematicsPure mathematicsApplied MathematicsDegenerate energy levelsWeak comparison principleMathematics::Analysis of PDEs35B51 35J70 35D30 49K20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicavery degenerate elliptic equationsFOS: MathematicsPoint (geometry)Nabla symbolBorel setDivergence (statistics)Analysis of PDEs (math.AP)MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Calder\'on's problem for p-Laplace type equations

2016

We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…

Mathematics - Analysis of PDEs35R30 (Primary) 35J92 35R05 35D30 35Q60 35Q79 35J20 35J25 35H99 35A15 35A01 35A02 80A23 (Secondary)
researchProduct

On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid

2016

We study the existence of weak solution for unsteady fluid-structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.

Dilatant35D30General MathematicsConstant Viscosity Elastic (Boger) Fluidsfluid-structure interactionhemodynamics01 natural sciencesexistence of weak solutionPhysics::Fluid Dynamics76A0576D03Fluid–structure interactionshear-thinning fluids0101 mathematicsMathematicsWeak solution010102 general mathematicsMechanicsnon-Newtonian fluidsNon-Newtonian fluid010101 applied mathematicsShear rateCondensed Matter::Soft Condensed Matter74F10Shear (geology)Generalized Newtonian fluidshear-thickening fluids35Q30
researchProduct

On the convergence of fixed point iterations for the moving geometry in a fluid-structure interaction problem

2019

In this paper a fluid-structure interaction problem for the incompressible Newtonian fluid is studied. We prove the convergence of an iterative process with respect to the computational domain geometry. In our previous works on numerical approximation of similar problems we refer this approach as the global iterative method. This iterative approach can be understood as a linearization of the so-called geometric nonlinearity of the underlying model. The proof of the convergence is based on the Banach fixed point argument, where the contractivity of the corresponding mapping is shown due to the continuous dependence of the weak solution on the given domain deformation. This estimate is obtain…

Iterative and incremental developmentIterative methodBanach fixed-point theoremApplied MathematicsWeak solution010102 general mathematicsGeometryFixed point01 natural sciences35D30 35Q30 74F10 76D05 76D03Domain (mathematical analysis)010101 applied mathematicsMathematics - Analysis of PDEsLinearizationConvergence (routing)FOS: Mathematics0101 mathematicsAnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct