Search results for "35b44"

showing 3 items of 3 documents

Stress concentration for closely located inclusions in nonlinear perfect conductivity problems

2019

We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p \leq N$. We prove optimal $L^\infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsZero (complex analysis)Perfect conductorAnalysiGradient blow-upType (model theory)Conductivity01 natural sciences010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsFinsler p-Laplacian0101 mathematicsPerfect conductorAnisotropy35J25 35B44 35B50 (Primary) 35J62 78A48 58J60 (Secondary)AnalysisAnalysis of PDEs (math.AP)MathematicsStress concentration
researchProduct

Gradient estimates for the perfect conductivity problem in anisotropic media

2018

Abstract We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.

Finsler LaplacianApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)Perfect conductorGradient blow-upConductivity01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsDimension (vector space)Settore MAT/05 - Analisi MatematicaElectric fieldSingular behaviorFOS: MathematicsMathematics (all)Primary: 35J25 35B44 35B50 Secondary: 35J62 78A48 58J600101 mathematicsPerfect conductorAnisotropyAnalysis of PDEs (math.AP)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain

2021

Abstract We study the wave inequality with a Hardy potential ∂ t t u − Δ u + λ | x | 2 u ≥ | u | p in  ( 0 , ∞ ) × Ω , $$\begin{array}{} \displaystyle \partial_{tt}u-{\it\Delta} u+\frac{\lambda}{|x|^2}u\geq |u|^p\quad \mbox{in } (0,\infty)\times {\it\Omega}, \end{array}$$ where Ω is the exterior of the unit ball in ℝ N , N ≥ 2, p &gt; 1, and λ ≥ − N − 2 2 2 $\begin{array}{} \displaystyle \left(\frac{N-2}{2}\right)^2 \end{array}$ , under the inhomogeneous boundary condition α ∂ u ∂ ν ( t , x ) + β u ( t , x ) ≥ w ( x ) on  ( 0 , ∞ ) × ∂ Ω , $$\begin{array}{} \displaystyle \alpha \frac{\partial u}{\partial \nu}(t,x)+\beta u(t,x)\geq w(x)\quad\mbox{on } (0,\infty)\times \partial{\it\Omega}, \e…

PhysicsMathematics::Functional Analysis35b3335b44QA299.6-433critical exponentMathematics::Complex Variables010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEshardy potentialMathematics::Spectral Theoryexterior domain01 natural sciencesDomain (software engineering)010101 applied mathematics35l05Settore MAT/05 - Analisi Matematicawave inequalitiesglobal weak solutions0101 mathematicsCritical exponentAnalysisAdvances in Nonlinear Analysis
researchProduct