Search results for "35j20"

showing 3 items of 13 documents

Quadrature domains for the Helmholtz equation with applications to non-scattering phenomena

2022

In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that there are non-scattering domains for the Helmholtz equation at any positive frequency that have inward cusps.

metaharmonic functionsmatematiikkapartial balayageyhtälötmean value theoremMathematics::Numerical Analysis35J05 35J15 35J20 35R30 35R35quadrature domainnon-scattering phenomenaMathematics - Analysis of PDEsFOS: MathematicsHelmholtz equationacoustic equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Existence of two solutions for singular Φ-Laplacian problems

2022

AbstractExistence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by theΦ\Phi-Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. GlobalC1,τ{C}^{1,\tau }regularity of solutions is also investigated, chiefly viaa prioriestimates and perturbation techniques.

singular termΦ-LaplacianSettore MAT/05 - Analisi MatematicaGeneral MathematicsSobolev-Orlicz spaceFOS: Mathematicsvariational methodsStatistical and Nonlinear Physics35J20 35J25 35J62Analysis of PDEs (math.AP)Advanced Nonlinear Studies
researchProduct

Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations

2021

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.

udc:517.9electrorheological fluidsElectrorheological fluidMaximum principleMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematicsconstant sign and nodal solutionsAnisotropyanisotropic operators regularity theory maximum principle constant sign and nodal solutions critical groups variable exponent electrorheological fluidsParametric statisticsMathematicsvariable exponentVariable exponentApplied MathematicsMathematical analysisudc:517.956.2regularity theoryAnisotropic operatorsanisotropic operatorsTerm (time)Primary: 35J20 35J60 35J92 Secondary: 47J15 58E05maximum principleConstant (mathematics)critical groupsAnalysisAnalysis of PDEs (math.AP)Sign (mathematics)
researchProduct