Search results for "35j25"

showing 2 items of 22 documents

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

2022

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

sub-supersolutionMathematics - Analysis of PDEsOrlicz-Sobolev spaceSettore MAT/05 - Analisi Matematicagradient dependenceGeneral Mathematicsnonlinear elliptic equationFOS: Mathematics35J25 35J99 46E35Analysis of PDEs (math.AP)
researchProduct

Comparison results for a linear elliptic equation with mixed boundary conditions

2003

In this paper we study a linear elliptic equation having mixed boundary conditions, defined in a connected open set $\Omega $ of $\mathbb{R}^{n}$. We prove a comparison result with a suitable ``symmetrized'' Dirichlet problem which cannot be uniformly elliptic depending on the regularity of $ \partial \Omega $. Regularity results for non-uniformly elliptic equations are also given.

symmetrization35B6535J25Settore MAT/05 - Analisi MatematicaApplied Mathematics35B05Comparison result35J70Analysis
researchProduct