Search results for "35l65"

showing 6 items of 6 documents

Stochastic Galerkin method for cloud simulation

2018

AbstractWe develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results…

010504 meteorology & atmospheric sciencesComputer scienceuncertainty quantificationQC1-999cloud dynamicsFOS: Physical sciencesCloud simulation65m15010103 numerical & computational mathematics01 natural sciencespattern formationMeteorology. ClimatologyFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsStochastic galerkin0105 earth and related environmental sciencesnavier-stokes equationsPhysics65m2565l05Numerical Analysis (math.NA)65m06Computational Physics (physics.comp-ph)stochastic galerkin method35l4535l65finite volume schemesQC851-999Physics - Computational Physicsimex time discretization
researchProduct

Towards Stable Radial Basis Function Methods for Linear Advection Problems

2021

In this work, we investigate (energy) stability of global radial basis function (RBF) methods for linear advection problems. Classically, boundary conditions (BC) are enforced strongly in RBF methods. By now it is well-known that this can lead to stability problems, however. Here, we follow a different path and propose two novel RBF approaches which are based on a weak enforcement of BCs. By using the concept of flux reconstruction and simultaneous approximation terms (SATs), respectively, we are able to prove that both new RBF schemes are strongly (energy) stable. Numerical results in one and two spatial dimensions for both scalar equations and systems are presented, supporting our theoret…

Work (thermodynamics)AdvectionScalar (physics)Numerical Analysis (math.NA)35L65 41A05 41A30 65D05 65M12Stability (probability)Computational Mathematics10123 Institute of Mathematics510 MathematicsComputational Theory and MathematicsModeling and SimulationPath (graph theory)FOS: MathematicsApplied mathematicsRadial basis functionBoundary value problemMathematics - Numerical Analysis2605 Computational MathematicsEnergy (signal processing)Mathematics2611 Modeling and Simulation1703 Computational Theory and Mathematics
researchProduct

Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux

2016

We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …

Crowd dynamicsMathematical optimizationFixed point argumentsDiscretizationGeneral MathematicsScalar (mathematics)Crowd dynamics; Finite volume approximation; Nonlocal point constraint; Scalar conservation law; Vehicular traffics; Well-posedness; Mathematics (all); Applied Mathematics01 natural sciencesMSC : 35L65 90B20 65M12 76M12NONonlocal point constraintCrowdsData acquisitionMathematics (all)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]DoorsUniqueness[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalar conservation lawMathematicsConservation lawVehicular trafficsFinite volume methodApplied Mathematics010102 general mathematics[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]010101 applied mathematicsWell-posednessFinite volume schemeFinite volume approximationConvergence of approximations[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Journal de Mathématiques Pures et Appliquées
researchProduct

Hybrid WENO schemes for polydisperse sedimentation models

2015

International audience; Polydisperse sedimentation models can be described by a strongly coupled system of conservation laws for the concentration of each species of solids. Typical solutions for the sedimentation model considered for batch settling in a column include stationary kinematic shocks separating layers of sediment of different composition. This phenomenon, known as segregation of species, is a specially demanding task for numerical simulation due to the need of accurate numerical simulations. Very high-order accurate solutions can be constructed by incorporating characteristic information, available due to the hyperbolicity analysis made in Donat and Mulet [A secular equation fo…

Geometry010103 numerical & computational mathematics65M0601 natural sciences[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]symbols.namesake35L65finite difference WENO schemesApplied mathematicspolydisperse sedimentation0101 mathematicsMathematicsConservation lawPartial differential equationComputer simulationApplied Mathematics76T20Finite differenceComputer Science Applications010101 applied mathematicsComputational Theory and MathematicsFlow (mathematics)Jacobian matrix and determinantsymbolsGravitational singularityConstant (mathematics)component-wise schemes
researchProduct

A degenerating convection-diffusion system modelling froth flotation with drainage

2022

Abstract Froth flotation is a common unit operation used in mineral processing. It serves to separate valuable mineral particles from worthless gangue particles in finely ground ores. The valuable mineral particles are hydrophobic and attach to bubbles of air injected into the pulp. This creates bubble-particle aggregates that rise to the top of the flotation column where they accumulate to a froth or foam layer that is removed through a launder for further processing. At the same time, the hydrophilic gangue particles settle and are removed continuously. The drainage of liquid due to capillarity is essential for the formation of a stable froth layer. This effect is included into a previous…

Applied MathematicsFluid Dynamics (physics.flu-dyn)FOS: MathematicsFOS: Physical sciencesMathematics - Numerical AnalysisPhysics - Fluid DynamicsNumerical Analysis (math.NA)35L65 35P05 35R05
researchProduct

On the convexity of relativistic ideal magnetohydrodynamics

2015

We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity con…

Physics[PHYS]Physics [physics]Special relativityPhysics and Astronomy (miscellaneous)Equation of state (cosmology)Degenerate energy levelsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Special relativityGeneral Relativity and Quantum CosmologyConvexityMagnetic field83A05 76W05 35L60 35L65Nonlinear systemConvexityMagnetohydrodynamicsFlow (mathematics)Magnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ComputingMilieux_MISCELLANEOUSMathematical physicsAstronomía y Astrofísica
researchProduct