Search results for "37.10.Vz"

showing 6 items of 6 documents

Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field

2009

We propose a new monotonically convergent algorithm which can enforce spectral constraints on the control field (and extends to arbitrary filters). The procedure differs from standard algorithms in that at each iteration the control field is taken as a linear combination of the control field (computed by the standard algorithm) and the filtered field. The parameter of the linear combination is chosen to respect the monotonic behavior of the algorithm and to be as close to the filtered field as possible. We test the efficiency of this method on molecular alignment. Using band-pass filters, we show how to select particular rotational transitions to reach high alignment efficiency. We also con…

PhysicsQuantum Physics32.80.Qk 37.10.Vz 78.20.Bh010304 chemical physicsField (physics)[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesMonotonic functionOptimal controlTopology01 natural sciencesAtomic and Molecular Physics and Optics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Band-pass filter0103 physical sciencesStandard algorithms010306 general physicsLinear combinationControl (linguistics)Quantum Physics (quant-ph)Quantum
researchProduct

Field-free molecular alignment for probing collisional relaxation dynamics

2013

International audience; We report the experimental study of field-free molecular alignment in CO2 gas mixtures induced by intense femtosecond laser pulses in the presence of collisional processes. We demonstrate that the alignment signals exhibit specific features due to nontrivial collisional propensity rules that tend to preserve the orientation of the rotational angular momentum of the molecules. The analysis is performed with a quantum approach based on the modeling of rotational J- and M-dependent state-to-state transfer rates. The present work paves the way for strong-field spectroscopy of collisional dynamics.

PhysicsAngular momentumWork (thermodynamics)Field (physics)Mechanical effects of light on atoms molecules and ions42.50.MdRelaxation (NMR)Optical transient phenomena: quantum beats photon echo free-induction decay dephasings and revivals optical nutation and self-induced transparencyLaserMolecular physicsAtomic and Molecular Physics and Opticslaw.inventionRotational and vibrational energy transferlaw[SDU]Sciences of the Universe [physics]34.50.EzFemtosecond37.10.VzSpectroscopyQuantum
researchProduct

Probing ultrafast thermalization with field-free molecular alignment

2012

International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.

Physicscollisional dynamics010304 chemical physicsField (physics)ultrafast nonlinear optics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph][ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]femtosecond phenomenaRelaxation (NMR)ultrafast relaxationTracking (particle physics)Laser01 natural sciences37.10.Vz 34.50.Ez 42.50.MdAtomic and Molecular Physics and Opticslaw.inventionPulse (physics)Molecular dynamicsThermalisationlaw0103 physical sciencesAtomic physics010306 general physicsUltrashort pulsemolecular alignment
researchProduct

Higher-order Kerr terms allow ionization-free filamentation in gases

2010

Talk given by J. Kasparian; International audience; Higher-order nonlinear indices, rather than plasma, provide the main defocusing contribution to filamentation in gases at 800 nm. Developing generalized Miller formulae, we discuss the generality of this as a function of the laser wavelength

optical Kerr effectlaser filamenation[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph][ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]laser filamentationPhysics::Opticsnonlinear propagation42.65.Jx 37.10.Vz 42.65.Tg 78.20.Ci[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

Higher-order Kerr terms allow ionization-free filamentation in gases

2010

International audience; We show that higher-order nonlinear indices (n4 , n6 , n8 , n10) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.

[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Molecular alignmentPhysics::Plasma PhysicsFemtosecond phenomenaPlasmasSelf-focusing[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Physics::Optics42.65.Jx 37.10.Vz 42.65.Tg 78.20.CiUltrafast nonlinear optics[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Optical Kerr effectLaser filamentation
researchProduct

High rate concentration measurement of molecular gas mixtures using a spatial detection technique

2010

International audience; Concentration measurement in molecular gas mixtures using a snapshot spatial imaging technique is reported. The approach consists of measuring the birefringence of the molecular sample when field-free alignment takes place, each molecular component producing a signal with an amplitude depending on the molecular density. The concentration measurement is obtained on a single-shot basis by probing the time-varying birefringence through femtosecond time-resolved optical polarigraphy (FTOP). The relevance of the method is assessed in air.

High rateBirefringenceMolecular alignment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]ChemistryTime resolved spectra[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Analytical chemistryPhysics::OpticsGeneral Physics and Astronomy37.10 Vz 42.50 Hz 42.50 Md01 natural sciences010305 fluids & plasmasFemtosecond laserSingle-shotAmplitudeOptical polarigraphy0103 physical sciencesFemtosecondMolecular DensityImaging techniquePhysical and Theoretical Chemistry[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Concentration measurement010306 general physics
researchProduct