Search results for "37C20"

showing 5 items of 5 documents

On the existence of attractors

2009

On every compact 3-manifold, we build a non-empty open set $\cU$ of $\Diff^1(M)$ such that, for every $r\geq 1$, every $C^r$-generic diffeomorphism $f\in\cU\cap \Diff^r(M)$ has no topological attractors. On higher dimensional manifolds, one may require that $f$ has neither topological attractors nor topological repellers. Our examples have finitely many quasi attractors. For flows, we may require that these quasi attractors contain singular points. Finally we discuss alternative definitions of attractors which may be better adapted to generic dynamics.

Pure mathematicsMathematics::Dynamical SystemsApplied MathematicsGeneral MathematicsMathematical analysisOpen setDynamical Systems (math.DS)Nonlinear Sciences::Chaotic Dynamics37C05 37C20 37C25 37C29 37D30AttractorFOS: MathematicsDiffeomorphismMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematics
researchProduct

Dirac physical measures for generic diffeomorphisms

2016

We prove that, for a $C^1$ generic diffeomorphism, the only Dirac physical measures with dense statistical basin are those supported on sinks.

Theoretical computer scienceGeneral Mathematics[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematicsDirac (software)[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Generic diffeomorphismsMSC: 37C05 37C20 37D30Dynamical Systems (math.DS)01 natural sciencesComputer Science ApplicationsPhysical measures0103 physical sciencesFOS: Mathematics010307 mathematical physicsDiffeomorphismMathematics - Dynamical Systems0101 mathematicsPhysics::Atmospheric and Oceanic PhysicsMathematicsMathematical physics
researchProduct

Recurrence and genericity

2003

We prove a C^1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C^1-generic diffeomorphisms. For instance, C^1-generic conservative diffeomorphisms are transitive. Nous montrons un lemme de connexion C^1 pour les pseudo-orbites des diffeomorphismes des varietes compactes. Nous explorons alors les consequences pour les diffeomorphismes C^1-generiques. Par exemple, les diffeomorphismes conservatifs C^1-generiques sont transitifs.

Pure mathematicsMathematics::Dynamical SystemsRiemann manifold[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences37C05 37C20FOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsDynamical system (definition)Mathematics::Symplectic GeometryMathematicsLemma (mathematics)Transitive relationRecurrence relationgeneric properties010102 general mathematicsMathematical analysissmooth dynamical systemsGeneral Medicine16. Peace & justicechain recurrence010101 applied mathematicsconnecting lemmaDiffeomorphism
researchProduct

A Franks' lemma that preserves invariant manifolds

2009

A well-known lemma by John Franks asserts that one obtains any perturbation of the derivative of a diffeomorphism along a periodic orbit by a $C^1$-perturbation of the whole diffeomorphism on a small neighbourhood of the orbit. However, one does not control where the invariant manifolds of the orbit are, after perturbation. We show that if the perturbated derivative is obtained by an isotopy along which some strong stable/unstable manifolds of some dimensions exist, then the Franks perturbation can be done preserving the corresponding stable/unstable semi-local manifolds. This is a general perturbative tool in $C^1$-dynamics that has many consequences. We give simple examples of such conseq…

[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics37C25 37C29 37C20 37D10[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

Aperiodic chain recurrence classes of $C^1$-generic diffeomorphisms

2022

We consider the space of $C^1$-diffeomorphims equipped with the $C^1$-topology on a three dimensional closed manifold. It is known that there are open sets in which $C^1$-generic diffeomorphisms display uncountably many chain recurrences classes, while only countably many of them may contain periodic orbits. The classes without periodic orbits, called aperiodic classes, are the main subject of this paper. The aim of the paper is to show that aperiodic classes of $C^1$-generic diffeomorphisms can exhibit a variety of topological properties. More specifically, there are $C^1$-generic diffeomorphisms with (1) minimal expansive aperiodic classes, (2) minimal but non-uniquely ergodic aperiodic c…

FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems37C20 37D30 57M30
researchProduct